mce_qd: encryption
This commit is contained in:
parent
ec81c53463
commit
09538f45d8
|
@ -388,6 +388,8 @@ public:
|
|||
std::vector<uint> Hsig; //signature of canonical H matrix
|
||||
std::vector<uint> support; //computed goppa support
|
||||
polynomial g; //computed goppa polynomial
|
||||
std::vector<polynomial> sqInv;
|
||||
|
||||
|
||||
int decrypt (const bvector&, bvector&);
|
||||
int prepare();
|
||||
|
@ -404,6 +406,7 @@ class pubkey
|
|||
{
|
||||
public:
|
||||
uint T;
|
||||
uint k;
|
||||
std::vector<bvector> qd_sigs;
|
||||
|
||||
int encrypt (const bvector&, bvector&, prng&);
|
||||
|
|
53
lib/fwht.cpp
Normal file
53
lib/fwht.cpp
Normal file
|
@ -0,0 +1,53 @@
|
|||
|
||||
#include "fwht.h"
|
||||
|
||||
#include <vector>
|
||||
using namespace std;
|
||||
|
||||
/*
|
||||
* we count on that all integers are sufficiently large.
|
||||
* They should be, largest value occuring should be O(k*n) if initial vector is
|
||||
* consisted only from {0,1}^n, and we don't usually have codes of this size.
|
||||
*/
|
||||
|
||||
static void fwht (vector<int> x, vector<int>&r)
|
||||
{
|
||||
int bs, s;
|
||||
s = x.size();
|
||||
r.resize (s);
|
||||
bs = s >> 1;
|
||||
r.swap (x);
|
||||
while (bs) {
|
||||
x.swap (r);
|
||||
for (uint i = 0; i < s; ++i) {
|
||||
if ( (i / bs) & 1)
|
||||
r[i] = x[i-bs] - x[i];
|
||||
else
|
||||
r[i] = x[i] + x[i+bs];
|
||||
}
|
||||
bs >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
//we expect correct parameter size and preallocated out.
|
||||
void fwht_dyadic_multiply (const bvector& a, const bvector& b, bvector& out)
|
||||
{
|
||||
|
||||
//lift everyting to Z.
|
||||
vector<int> t, A, B;
|
||||
uint i;
|
||||
|
||||
for (i = 0; i < a.size(); ++i) t[i] = a[i];
|
||||
fwht (t, A);
|
||||
|
||||
for (i = 0; i < b.size(); ++i) t[i] = b[i];
|
||||
fwht (t, B);
|
||||
|
||||
//multiply diagonals to A
|
||||
for (i = 0; i < A.size(); ++i) A[i] *= B[i];
|
||||
fwht (A, t);
|
||||
|
||||
uint bitpos = a.size(); //no problem as a.size() == 1<<m == 2^m
|
||||
for (i = 0; i < t.size(); ++i) out[i] = (t[i] & bitpos) ? 1 : 0;
|
||||
}
|
||||
|
13
lib/fwht.h
Normal file
13
lib/fwht.h
Normal file
|
@ -0,0 +1,13 @@
|
|||
|
||||
#ifndef _fwht_h_
|
||||
#define _fwht_h_
|
||||
|
||||
#include "codecrypt.h"
|
||||
|
||||
using namespace ccr;
|
||||
|
||||
//parameters MUST be of 2^m size.
|
||||
void fwht_dyadic_multiply (const bvector&, const bvector&, bvector&);
|
||||
|
||||
#endif
|
||||
|
110
lib/mce_qd.cpp
110
lib/mce_qd.cpp
|
@ -70,17 +70,17 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
used.insert (fld.inv (essence[s]) );
|
||||
|
||||
for (uint j = 1; j < i; ++j) {
|
||||
Hsig[i+j] = fld.inv (
|
||||
fld.add (
|
||||
fld.inv (Hsig[i]),
|
||||
Hsig[i+j] = fld.inv
|
||||
(fld.add
|
||||
(fld.inv (Hsig[i]),
|
||||
fld.add (
|
||||
fld.inv (Hsig[j]),
|
||||
essence[m-1]
|
||||
) ) );
|
||||
used.insert (Hsig[i+j]);
|
||||
used.insert (fld.inv (
|
||||
fld.add (
|
||||
fld.inv (Hsig[i+j]),
|
||||
used.insert (fld.inv
|
||||
(fld.add
|
||||
(fld.inv (Hsig[i+j]),
|
||||
essence[m-1]) ) );
|
||||
}
|
||||
}
|
||||
|
@ -182,6 +182,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
*/
|
||||
|
||||
pub.T = T;
|
||||
pub.k = (block_count - fld.m) * block_size;
|
||||
pub.qd_sigs.resize (ri.width() / t);
|
||||
for (uint i = 0; i < ri.width(); i += t)
|
||||
pub.qd_sigs[i/t] = ri[i];
|
||||
|
@ -192,14 +193,105 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
|
||||
int privkey::prepare()
|
||||
{
|
||||
//TODO compute H signature from essence
|
||||
//TODO compute goppa code support
|
||||
//compute H signature from essence
|
||||
Hsig.resize (fld.n / 2);
|
||||
Hsig[0] = fld.inv (essence[fld.m-1]);
|
||||
for (uint s = 0; s < fld.m - 1; ++s) {
|
||||
uint i = 1 << s; //i = 2^s
|
||||
|
||||
//TODO verify this
|
||||
Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m-1]) );
|
||||
|
||||
for (uint j = 1; j < i; ++j)
|
||||
Hsig[i+j] = fld.inv
|
||||
(fld.add
|
||||
(fld.inv (Hsig[i]),
|
||||
fld.add (
|
||||
fld.inv (Hsig[j]),
|
||||
essence[fld.m-1]
|
||||
) ) );
|
||||
}
|
||||
|
||||
//compute the support
|
||||
support.resize (fld.n / 2);
|
||||
for (uint i = 0; i < fld.n / 2; ++i) {
|
||||
support[i] = fld.add
|
||||
(fld.inv (Hsig[i]),
|
||||
essence[fld.m-1]);
|
||||
|
||||
}
|
||||
|
||||
//goppa polynomial
|
||||
g.clear();
|
||||
g.resize (1, 1);
|
||||
polynomial tmp;
|
||||
tmp.resize (2, 1);
|
||||
uint t = 1 << T;
|
||||
for (uint i = 0; i < t; ++i) {
|
||||
tmp[0] = fld.inv (Hsig[i]);
|
||||
g.mult (tmp, fld);
|
||||
}
|
||||
|
||||
//sqInv
|
||||
g.compute_square_root_matrix (sqInv, fld);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#include "fwht.h"
|
||||
|
||||
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
||||
{
|
||||
//TODO FWHT
|
||||
uint t = 1 << T;
|
||||
bvector p, g, r, cksum;
|
||||
|
||||
/*
|
||||
* shortened checksum pair of G is computed blockwise accordingly to
|
||||
* the t-sized square dyadic blocks.
|
||||
*/
|
||||
|
||||
//some checks
|
||||
if (in.size() != k) return 1;
|
||||
if (!qd_sigs.size() ) return 1;
|
||||
if (qd_sigs[0].size() % t) return 1;
|
||||
|
||||
uint blocks = qd_sigs[0].size() / t;
|
||||
cksum.resize (qd_sigs[0].size(), 0);
|
||||
|
||||
p.resize (t);
|
||||
g.resize (t);
|
||||
r.resize (t);
|
||||
|
||||
for (uint i = 0; i < blocks; ++i) {
|
||||
//plaintext block
|
||||
for (uint k = 0; k < t; ++k) p[k] = in[k+i*t];
|
||||
|
||||
for (uint j = 0; j < qd_sigs.size(); ++j) {
|
||||
//checksum block
|
||||
for (uint k = 0; k < t; ++k) g[k] = qd_sigs[i][k+j*t];
|
||||
|
||||
//block result
|
||||
fwht_dyadic_multiply (p, g, r);
|
||||
cksum.add_offset (r, t * j);
|
||||
}
|
||||
}
|
||||
|
||||
//generate t errors
|
||||
bvector e;
|
||||
e.resize (k + qd_sigs[0].size(), 0);
|
||||
for (uint n = t; n > 0;) {
|
||||
uint p = rng.random (e.size() );
|
||||
if (!e[p]) {
|
||||
e[p] = 1;
|
||||
--n;
|
||||
}
|
||||
}
|
||||
|
||||
//compute ciphertext
|
||||
out = in;
|
||||
out.insert (out.end(), cksum.begin(), cksum.end() );
|
||||
out.add (e);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue