algos_enc: work, fujisaki-okamoto encryption

This commit is contained in:
Mirek Kratochvil 2013-01-17 16:31:34 +01:00
parent f32a311671
commit 0f2db0b62c
2 changed files with 177 additions and 10 deletions

View file

@ -91,7 +91,7 @@ static void message_pad (const bvector&in, std::vector<byte>&out, prng&rng)
else out.resize ( ( (in.size() - 1) >> 3) + 2, 0);
//copy message bits
int i;
uint i;
for (i = 0; i < in.size(); ++i)
if (in[i]) out[i >> 3] |= 1 << (i & 0x7);
@ -105,9 +105,9 @@ static void message_pad (const bvector&in, std::vector<byte>&out, prng&rng)
out[i >> 3] = in.size() & 0x7;
//byte stage
int overflow = out.size() & 0xff;
int pad_block_start = out.size() >> 8;
int pad_block_start_byte = pad_block_start << 8;
uint overflow = out.size() & 0xff;
uint pad_block_start = out.size() >> 8;
uint pad_block_start_byte = pad_block_start << 8;
//make space for the bytes
out.resize ( (pad_block_start + 1) << 8, 0);
@ -122,33 +122,200 @@ static void message_pad (const bvector&in, std::vector<byte>&out, prng&rng)
static bool message_unpad (const std::vector<byte>&in, bvector&out)
{
//check byte padding sizes
if (!in.size() ) return false;
if (in.size() & 0xff) return false;
//get rid of the byte padding
uint byte_overflow = in[in.size() - 1];
uint in_end = in.size() + byte_overflow - 256;
//get bit padding information (now it's the last byte)
if (!in_end) return false;
uint bit_overflow = in[in_end - 1];
//there must not be more than one byte of overflown bits
if (bit_overflow >= 8) return false;
//check if there's byte with overflow bits
if (bit_overflow && (in_end < 2) ) return false;
//convert to bvector
uint msg_size = ( (in_end - (bit_overflow ? 2 : 1) ) << 3)
+ bit_overflow;
out.clear();
out.resize (msg_size);
for (uint i = 0; i < msg_size; ++i)
out[i] = 1 & (in[i >> 3] >> (i & 0x7) );
return true;
}
/*
* Fujisaki-okamoto encryption scheme
* Fujisaki-okamoto part
*/
#define min(a,b) ((a)<(b)?(a):(b))
#include "sha_hash.h"
#include "arcfour.h"
/*
* Generic F-O encryption function. Note that ranksize must be equal to
*
* floor(log(comb(ciphersize,errorcount))/log(2))
*
* otherwise it probably fails miserably.
*/
template < class pubkey_type,
int plainsize,
int ciphersize,
int errorcount,
class hash_type,
int ranksize >
static int fo_encrypt (const bvector&plain, bvector&cipher,
sencode* pubkey, prng&rng)
{
uint i;
//load the key
pubkey_type Pub;
if (Pub.unserialize (pubkey) ) return 1;
//verify that key parameters match our scheme
if (Pub.plain_size() != plainsize) return 1;
if (Pub.cipher_size() != ciphersize) return 1;
if (Pub.error_count() != errorcount) return 1;
//create the unencrypted message part
std::vector<byte> M;
message_pad (plain, M, rng);
//create the symmetric key
std::vector<byte> K;
K.resize (plainsize >> 3);
for (i = 0; i < K.size(); ++i) K[i] = rng.random (256);
//create the base for error vector
std::vector<byte> H, M2;
M2 = M;
M2.insert (M2.end(), K.begin(), K.end() );
hash_type hf;
H = hf (M2);
//prepare the error vector
bvector ev_rank;
ev_rank.resize (ranksize);
for (i = 0; i < ranksize; ++i) ev_rank[i] = 1 & (H[ (i >> 3) % H.size()] >> (i & 0x7) );
bvector ev;
ev_rank.colex_unrank (ev, ciphersize, errorcount);
//prepare plaintext
bvector mce_plain;
mce_plain.resize (plainsize);
for (i = 0; i < plainsize; ++i) mce_plain[i] = 1 & (M[i >> 3] >> (i & 0x7) );
//run McEliece
if (Pub.encrypt (mce_plain, cipher, ev) ) return 2;
//encrypt the message part (xor with arcfour)
arcfour<byte> arc;
arc.init (8);
//whole key must be tossed in, so split if when necessary
for (i = 0; i < (K.size() >> 8); ++i) {
std::vector<byte> subkey (K.begin() + (i << 8),
min (K.end(),
K.begin() + ( (i + 1) << 8) ) );
arc.load_key (subkey);
}
arc.discard (256);
for (i = 0; i < M.size(); ++i) M[i] = M[i] ^ arc.gen();
//append the message part to the ciphertext
cipher.resize (ciphersize + (M.size() << 3) );
for (i = 0; i < (M.size() << 3); ++i)
cipher[ciphersize + i] = 1 & (M[i >> 3] >> (i & 0x7) );
return 0;
}
template < class privkey_type,
int plainsize,
int ciphersize,
int errorcount,
class hash_type,
int ranksize >
static int fo_decrypt (const bvector&cipher, bvector&plain,
sencode* privkey)
{
uint i;
//load the key
privkey_type Priv;
if (Priv.unserialize (privkey) ) return 1;
//verify that key parameters match the scheme
if (Priv.plain_size() != plainsize) return 1;
if (Priv.cipher_size() != ciphersize) return 1;
if (Priv.error_count() != errorcount) return 1;
//TODO
//split the message into McE and Arcfour parts
//decrypt the symmetric key
//decrypt the message part
//check the hash
//unpad the message
return -1;
}
/*
* Instances for actual encryption/descryption algorithms
*/
int algo_mceqd128::encrypt (const bvector&plain, bvector&cipher,
sencode* pubkey, prng&rng)
{
return -1;
return fo_encrypt
< mce_qd::pubkey,
2048, 4096, 128,
sha256hash,
816 >
(plain, cipher, pubkey, rng);
}
int algo_mceqd256::encrypt (const bvector&plain, bvector&cipher,
sencode* pubkey, prng&rng)
{
return -1;
return fo_encrypt
< mce_qd::pubkey,
4096, 8192, 256,
sha512hash,
1638 >
(plain, cipher, pubkey, rng);
}
int algo_mceqd128::decrypt (const bvector&cipher, bvector&plain,
sencode* privkey)
{
return -1;
return fo_decrypt
< mce_qd::privkey,
2048, 4096, 128,
sha256hash,
816 >
(cipher, plain, privkey);
}
int algo_mceqd256::decrypt (const bvector&cipher, bvector&plain,
sencode* privkey)
{
return -1;
return fo_decrypt
< mce_qd::privkey,
4096, 8192, 256,
sha256hash,
1638 >
(cipher, plain, privkey);
}

View file

@ -55,7 +55,7 @@ public:
}
std::string get_alg_id() {
return "MCEQD256FO-SHA256-ARCFOUR";
return "MCEQD256FO-SHA512-ARCFOUR";
}
int encrypt (const bvector&plain, bvector&cipher,