bvector: massive ranking/unranking speedup

This commit is contained in:
Mirek Kratochvil 2013-05-18 09:08:24 +02:00
parent 456718e301
commit 105a7731d3
2 changed files with 103 additions and 52 deletions

View file

@ -139,12 +139,42 @@ void bvector::from_string (const std::string&in)
* utility colex (un)ranking for niederreiter and workalikes.
* see Ruskey's Combinatorial Generation, algorithm 4.10
*
* TODO use (external) cache for combination numbers to speed this up.
* Colex ranking here uses "walking" through combination number space instead
* of caching or actual combination number generation. For a nice image, see
* the book.
*
* Suppose that you have a = (n choose k)
*
* then:
* (n+1 choose k) = a * (n+1) / (n-k+1)
* (n-1 choose k) = a * (n-k) / n
* (n choose k+1) = a * (n-k) / (k+1)
* (n choose k-1) = a * k / (n-k+1)
*
* Because colex ranking forms a "path" through tne combination number space
* (from (1 choose 1) to (length choose count)), worst operations actually use
* at most (length+count) multiplications and divisions, for worst McEliece
* parameters that is around 16k operations total (plus starting combination
* number computation un case of unranking, which is around 500 long ops.)
*
* To compare naive approach:
* - ranking needs computation of the same count of combination numbers as
* count parameter. Those are (n choose k) with average n=(length/2) and
* k=(count/2), every number needs 2k long operations, total operations is
* count*count/2 = around 32k for mceliece approach.
* - unranking needs terrible number of "attempts" to determine each p (around
* 13 in binary search), this basically means it uses around 0.4M long
* operations. Wrong way.
*
* For extremely sparse vectors (where 2*(length+count)>count*count/2, roughly
* where count>2*sqrt(length)) it can be benefical to compute stuff using the
* naive approach. This doesn't count for our McEliece parameters, so naive
* approach is not implemented at all.
*/
#include <gmp.h>
static void combination_number (uint n, uint k, mpz_t& r)
static void combination_number (mpz_t& r, uint n, uint k)
{
mpz_t t;
if (k > n) {
@ -190,83 +220,104 @@ static void mpz_to_bvector (mpz_t&x, bvector&r)
void bvector::colex_rank (bvector&r) const
{
mpz_t res, t, t2;
mpz_t res, comb, t;
mpz_init_set_ui (res, 0);
mpz_init_set_ui (comb, 1);
mpz_init (t);
mpz_init (t2);
uint i, j;
j = 1;
for (i = 0; i < size(); ++i)
if (item (i) ) {
combination_number (i, j, t);
mpz_swap (t2, res);
mpz_add (res, t, t2);
++j;
uint n = 0, k = 1;
while (item (n) ) ++n, ++k; //skip the "zeroes" on the beginning
++n; //now n=k=1, comb=1
//non-zero positions
for (; n < size(); ++n) {
if (item (n) ) {
//add combination number to result
mpz_swap (t, res);
mpz_add (res, t, comb);
}
//increase n in comb
mpz_swap (t, comb);
mpz_mul_ui (comb, t, n + 1);
mpz_swap (t, comb);
mpz_fdiv_q_ui (comb, t, n - k + 1);
if (item (n) ) {
//increase k in comb
mpz_swap (t, comb);
mpz_mul_ui (comb, t, n + 1 - k); //n has changed!
mpz_swap (t, comb);
mpz_fdiv_q_ui (comb, t, k + 1);
++k;
}
}
mpz_to_bvector (res, r);
mpz_clear (comb);
mpz_clear (t);
mpz_clear (t2);
mpz_clear (res);
}
void bvector::colex_unrank (bvector&res, uint n, uint k) const
bool bvector::colex_unrank (bvector&res, uint n, uint k) const
{
mpz_t r, t, t2;
mpz_t r, comb, t, t2;
mpz_init (r);
mpz_init (comb);
mpz_init (t);
mpz_init (t2);
bvector_to_mpz (*this, r);
combination_number (comb, n, k); //initialize to the end of path
res.clear();
//check if incoming r is not too big.
if (mpz_cmp (r, comb) >= 0) {
mpz_clear (r);
mpz_clear (comb);
mpz_clear (t);
return false;
}
res.resize (n, 0);
for (uint i = k; i > 0; --i) {
/* Original code:
for (; k > 0; --k) {
if (mpz_sgn (r) == 0) //zero r needs n<k -> switch to simple mode
break;
uint p = i;
for (;;) {
combination_number (p, i, t);
if (mpz_cmp (t, r) > 0) break;
++p;
while (n > k && mpz_cmp (comb, r) > 0) {
//decrease n until something <=r is found
mpz_swap (t, comb);
mpz_mul_ui (comb, t, n - k);
mpz_swap (t, comb);
mpz_fdiv_q_ui (comb, t, n);
--n;
}
* ...that kindof lacks speed. We're actually trying to find
* the smallest value of p for which comb(p,i)>r.
*
* Computing all combination numbers is KIND OF slow and cache
* (as suggested by Barreto and others) doesn't really make big
* difference here (we're usually doing only one or two runs of
* this stuff in one program run). Storing about 50megs of
* precalculated combination numbers is weird as well.
*
* Therefore, with the knowledge that i <= p <= n, we're
* halving the search interval as usual.
*/
res[n] = 1;
uint p, a = i, b = n + 1;
while (a < b) {
p = (a + b) / 2;
//r -= comb
mpz_swap (t, r);
mpz_sub (r, t, comb);
combination_number (p, i, t);
if (mpz_cmp (t, r) > 0) b = p;
else a = p + 1;
}
//decrease k
mpz_swap (t, comb);
mpz_mul_ui (comb, t, k);
mpz_swap (t, comb);
mpz_fdiv_q_ui (comb, t, n - k + 1);
}
combination_number (b - 1, i, t);
mpz_swap (t2, r);
mpz_sub (r, t2, t);
//overflow protection (result's wrong anyway now)
if (b > n) continue;
res[b - 1] = 1;
//do the "zeroes" rest
for (; k > 0; --k) {
res[k - 1] = 1;
}
mpz_clear (r);
mpz_clear (comb);
mpz_clear (t);
mpz_clear (t2);
return true;
}

View file

@ -55,7 +55,7 @@ public:
void from_poly_cotrace (const polynomial&, gf2m&);
void colex_rank (bvector&) const;
void colex_unrank (bvector&, uint n, uint k) const;
bool colex_unrank (bvector&, uint n, uint k) const;
bool to_string (std::string&) const;
void from_string (const std::string&);