From 171c660d3d0cd56ccecbb8531086293f73f5136d Mon Sep 17 00:00:00 2001 From: Mirek Kratochvil Date: Tue, 3 Apr 2012 12:51:23 +0200 Subject: [PATCH] square root matrix works --- include/codecrypt.h | 2 +- lib/gf2m.cpp | 10 ------- lib/polynomial.cpp | 64 ++++++++++++++++++++++++++++++++++++++------- 3 files changed, 56 insertions(+), 20 deletions(-) diff --git a/include/codecrypt.h b/include/codecrypt.h index 19dff0c..2138307 100644 --- a/include/codecrypt.h +++ b/include/codecrypt.h @@ -126,7 +126,7 @@ public: polynomial gcd (polynomial, gf2m&); bool is_irreducible (gf2m&); void generate_random_irreducible (uint s, gf2m&, prng&); - void compute_square_root_matrix (std::vector&, gf2m&); + bool compute_square_root_matrix (std::vector&, gf2m&); }; /* diff --git a/lib/gf2m.cpp b/lib/gf2m.cpp index 3b3bca2..5f84c38 100644 --- a/lib/gf2m.cpp +++ b/lib/gf2m.cpp @@ -3,9 +3,6 @@ using namespace ccr; -#include -using namespace std; - /* * helpful stuff for arithmetic in GF(2^m) - polynomials over GF(2). */ @@ -22,13 +19,6 @@ inline uint gf2p_add (uint a, uint b) return a ^ b; } -void outbin (const char*n, uint x) -{ - cout << n << " = "; - for (int i = 31; i >= 0; --i) cout << (1 & (x>>i) ); - cout << endl; -} - uint gf2p_mod (uint a, uint p) { if (!p) return 0; diff --git a/lib/polynomial.cpp b/lib/polynomial.cpp index 5e20b95..bbade71 100644 --- a/lib/polynomial.cpp +++ b/lib/polynomial.cpp @@ -74,10 +74,8 @@ polynomial polynomial::gcd (polynomial b, gf2m&fld) if (a.degree() < 0) return b; for (;;) { if (b.zero() ) return a; - dump (a); a.mod (b, fld); if (a.zero() ) return b; - dump (b); b.mod (a, fld); } //unreachable @@ -117,20 +115,20 @@ void polynomial::generate_random_irreducible (uint s, gf2m&fld, prng& rng) item (s) = 1; //degree s item (0) = 1 + rng.random (fld.n - 1); //not divisible by x^1 for (uint i = 1; i < s; ++i) item (i) = rng.random (fld.n); - dump (*this); while (!is_irreducible (fld) ) { - dump (*this); uint pos = rng.random (s); item (pos) = pos == 0 ? (1 + rng.random (fld.n - 1) ) : rng.random (fld.n); } } -void polynomial::compute_square_root_matrix (vector&r, gf2m&fld) +bool polynomial::compute_square_root_matrix (vector&r, gf2m&fld) { + // step 1, generate a square matrix of squares mod poly. int d = degree(); - if (d < 0) return; - r.resize (d); + if (d < 0) return false; + vectorl; + l.resize (d); polynomial col, t; for (int i = 0; i < d; ++i) { col.clear(); @@ -140,8 +138,56 @@ void polynomial::compute_square_root_matrix (vector&r, gf2m&fld) col.mult (t, fld); col.mod (*this, fld); col.resize (d, 0); - r[i] = col; + l[i] = col; + } + // step 2, gauss-jordan inverse to unit matrix + r.resize(d); + for(int i=0;i=0;--i) + for(j=0;j