From 1c2e807f69e563f7a133737a6ab6bebf43a563da Mon Sep 17 00:00:00 2001 From: Mirek Kratochvil Date: Sun, 13 May 2012 00:17:12 +0200 Subject: [PATCH] debugging stash 1 --- include/codecrypt.h | 1 + lib/bvector.cpp | 12 ++++++++-- lib/gf2m.cpp | 2 +- lib/polynomial.cpp | 56 ++++++++++++++++++++++----------------------- 4 files changed, 39 insertions(+), 32 deletions(-) diff --git a/include/codecrypt.h b/include/codecrypt.h index 0d248b8..b30ba1f 100644 --- a/include/codecrypt.h +++ b/include/codecrypt.h @@ -38,6 +38,7 @@ public: bool operator* (const bvector&); //dot product bool zero() const; void to_poly (polynomial&, gf2m&); + void from_poly (const polynomial&, gf2m&); }; /* diff --git a/lib/bvector.cpp b/lib/bvector.cpp index 04179c4..9630af7 100644 --- a/lib/bvector.cpp +++ b/lib/bvector.cpp @@ -34,8 +34,16 @@ bool bvector::zero() const void bvector::to_poly (polynomial&r, gf2m&fld) { r.clear(); - if(size() % fld.m) return; //impossible + if (size() % fld.m) return; //impossible r.resize (size() / fld.m, 0); for (uint i = 0; i < size(); ++i) - if (item (i) ) r[i/fld.m] |= 1 << (i % fld.m); + if (item (i) ) r[i/fld.m] |= (1 << (i % fld.m) ); +} + +void bvector::from_poly (const polynomial&r, gf2m&fld) +{ + clear(); + resize (r.size() *fld.m, 0); + for (uint i = 0; i < size(); ++i) + item (i) = (r[i/fld.m] >> (i % fld.m) ) & 1; } diff --git a/lib/gf2m.cpp b/lib/gf2m.cpp index b8858d2..038cb37 100644 --- a/lib/gf2m.cpp +++ b/lib/gf2m.cpp @@ -76,7 +76,7 @@ bool gf2m::create (uint M) m = M; n = 1 << m; if (!n) return false; //too big. - for (uint t = 1 + (1 << m), e = 1 << (1 + m); t < e; t += 2) + for (uint t = (1 << m)+1, e = 1 << (m+1); t < e; t += 2) if (is_irreducible_gf2_poly (t) ) { poly = t; return true; diff --git a/lib/polynomial.cpp b/lib/polynomial.cpp index 451e84d..ca484f2 100644 --- a/lib/polynomial.cpp +++ b/lib/polynomial.cpp @@ -67,15 +67,14 @@ void polynomial::mod (const polynomial&f, gf2m&fld) void polynomial::mult (const polynomial&b, gf2m&fld) { polynomial a = *this; - clear(); uint i, j; int da, db; da = a.degree(); db = b.degree(); - if ( (da < 0) || (db < 0) ) { //multiply by zero - clear(); + + clear(); + if ( (da < 0) || (db < 0) ) //multiply by zero return; - } resize (da + db + 1, 0); for (i = 0; i <= da; ++i) @@ -113,7 +112,7 @@ bool polynomial::is_irreducible (gf2m&fld) const xmodf.mod (*this, fld); //mod f uint d = degree(); - for (uint i = 1; i <= d / 2; ++i) { + for (uint i = 1; i <= (d / 2); ++i) { for (uint j = 0; j < fld.m; ++j) { t = xi; t.mult (xi, fld); @@ -124,7 +123,7 @@ bool polynomial::is_irreducible (gf2m&fld) const t.add (xmodf, fld); t = t.gcd (*this, fld); - if (t.degree() > 0) //gcd(f,x^2^i - x mod f) != const + if (!t.one() ) return false; } return true; @@ -228,7 +227,7 @@ void polynomial::compute_goppa_check_matrix (matrix&r, gf2m&fld) { if (degree() < 0) return; //wrongly initialized polynomial uint t = degree(); - vector > vd, h; + vector vd, h; //matrix over fld uint i, j, k; //construction from Barreto's slides with maximal support L=[0..fld.n) @@ -246,20 +245,18 @@ void polynomial::compute_goppa_check_matrix (matrix&r, gf2m&fld) for (i = 0; i < fld.n; ++i) { h[i].resize (t); for (j = 0; j < t; ++j) { //computing the element h[i][j] - h[i][j]=0; + h[i][j] = 0; for (k = 0; k <= j; ++k) //k = column index of t h[i][j] = fld.add (h[i][j], - fld.mult (item (t - j + k), + fld.mult (item (t + k - j), vd[i][k]) ); + } } //now convert to binary r.resize (fld.n); - for (i = 0; i < fld.n; ++i) { - r[i].resize (fld.m * t); - for (j = 0; j < fld.m * t; ++j) - r[i][j] = (h[i][j/fld.m] >> (j % fld.m) ) & 1; - } + for (i = 0; i < fld.n; ++i) + r[i].from_poly (h[i], fld); } void polynomial::make_monic (gf2m&fld) @@ -279,7 +276,7 @@ void polynomial::shift (uint n) void polynomial::square (gf2m&fld) { polynomial a = *this; - this->mult (a, fld); + mult (a, fld); } void polynomial::sqrt (vector& sqInv, gf2m&fld) @@ -329,10 +326,7 @@ void polynomial::div (polynomial&p, polynomial&m, gf2m&fld) } *this = s0; - if (r0.degree() >= 0) { - uint m = fld.inv (r0[r0.degree() ]); - for (uint i = 0; i < size(); ++i) item (i) = fld.mult (item (i), m); - } + make_monic(fld); } void polynomial::divmod (polynomial&d, polynomial&res, polynomial&rem, gf2m&fld) @@ -356,31 +350,35 @@ void polynomial::divmod (polynomial&d, polynomial&res, polynomial&rem, gf2m&fld) void polynomial::inv (polynomial&m, gf2m&fld) { polynomial a = *this; - this->resize (1); + resize (1); item (0) = 1; div (a, m, fld); } -void polynomial::mod_to_fracton (polynomial&a, polynomial&b, polynomial&m, gf2m&fld) +void polynomial::mod_to_fracton (polynomial&a, polynomial&b, + polynomial&m, gf2m&fld) { int deg = m.degree() / 2; - polynomial a0, a1, b0, b1, t1, t2; + polynomial a0, a1, b0, b1, q, r; a0 = m; a1 = *this; a1.mod (m, fld); - b0.resize (1, 0); + + b0.clear(); + b1.clear(); b1.resize (1, 1); + while (a1.degree() > deg) { - a0.divmod (a1, t1, t2, fld); + a0.divmod (a1, q, r, fld); a0.swap (a1); - a1.swap (t2); + a1.swap (r); - t1.mult (b1, fld); - t1.mod (m, fld); - t1.add (b0, fld); + q.mult (b1, fld); + q.mod (m, fld); + q.add (b0, fld); b0.swap (b1); - b1.swap (t1); + b1.swap (q); } a = a1; b = b1;