mce_oc signature implementation

+ some fixes
+ mce_qd skeleton
This commit is contained in:
Mirek Kratochvil 2012-07-18 11:17:36 +02:00
parent b75c94ba79
commit 21b3ef85d1
6 changed files with 347 additions and 22 deletions

View file

@ -10,6 +10,13 @@
{ return (*this)[n]; }; \
inline const_reference item(size_type n) const \
{ return (*this)[n]; };
#define _ccr_declare_matrix_item \
inline value_type::reference \
item(size_type n, size_type m) \
{ return (*this)[n][m]; }; \
inline value_type::const_reference \
item(size_type n, size_type m) const \
{ return (*this)[n][m]; };
namespace ccr
{
@ -62,6 +69,7 @@ class matrix : public std::vector<bvector>
{
protected:
_ccr_declare_vector_item
_ccr_declare_matrix_item
public:
uint width() const {
return size();
@ -75,20 +83,24 @@ public:
matrix operator* (const matrix&);
void mult (const matrix&); //right multiply - this*param
void compute_transpose (matrix&);
bool compute_inversion (matrix&);
void generate_random_invertible (uint, prng&);
void unit (uint);
void compute_transpose (matrix&);
bool mult_vecT_left (const bvector&, bvector&);
bool mult_vec_right (const bvector&, bvector&);
bool compute_inversion (matrix&);
bool set_block (uint, uint, const matrix&);
bool get_left_square (matrix&);
bool strip_left_square (matrix&);
bool get_right_square (matrix&);
bool strip_right_square (matrix&);
void extend_left_compact (matrix&);
void generate_random_invertible (uint, prng&);
bool create_goppa_generator (matrix&, permutation&, prng&);
bool create_goppa_generator (matrix&, const permutation&);
bool mult_vecT_left (const bvector&, bvector&);
bool mult_vec_right (const bvector&, bvector&);
};
/*
@ -295,6 +307,125 @@ public:
int generate (pubkey&, privkey&, prng&, uint m, uint t);
}
/*
* compact Quasi-dyadic McEliece
* according to Misoczki, Barreto, Compact McEliece Keys from Goppa Codes.
*
* Good security, extremely good speed with extremely reduced key size.
* Recommended for encryption.
*/
namespace mce_qd
{
class privkey
{
public:
int decrypt (const bvector&, bvector&);
int prepare();
uint cipher_size() {
return 0; //TODO
}
uint plain_size() {
return 0; //TODO
}
uint hash_size() {
return 0; //TODO
}
uint signature_size() {
return 0; //TODO
}
};
class pubkey
{
public:
matrix G;
uint t;
int encrypt (const bvector&, bvector&, prng&);
uint cipher_size() {
return G.height();
}
uint plain_size() {
return G.width();
}
uint hash_size() {
return cipher_size();
}
uint signature_size() {
return plain_size();
}
};
int generate (pubkey&, privkey&, prng&, uint m, uint t);
}
/*
* McEliece on Overlapping Chain of Goppa Codes
*
* Similar to Hamdi's Chained BCH Codes, but with improvement.
*
* This is experimental, unverified, probably insecure, but practical scheme
* that achieves good speed, probability and key size for full decoding that is
* needed to produce signatures. Technique is described in documentation, with
* some (probably sufficient) notes in source code.
*
* Note that encryption using this scheme is absolutely impractical.
*/
namespace mce_oc
{
class privkey
{
public:
matrix Sinv;
permutation Pinv;
gf2m fld;
class subcode
{
public:
polynomial g;
permutation hperm;
//derivables
matrix h;
std::vector<polynomial> sqInv;
};
std::vector<subcode> codes;
int sign (const bvector&, bvector&, uint, uint, prng&);
int prepare();
uint hash_size() {
return Pinv.size();
}
uint signature_size() {
return Sinv.size();
}
};
class pubkey
{
public:
matrix G;
uint n, t;
int verify (const bvector&, const bvector&, uint);
uint hash_size() {
return G.width();
}
uint signature_size() {
return G.height();
}
};
//n is the number of subcodes used
int generate (pubkey&, privkey&, prng&, uint m, uint t, uint n);
}
} //namespace ccr
//global overload for iostream operators
@ -307,7 +438,5 @@ std::ostream& operator<< (std::ostream&o, const ccr::matrix&);
std::ostream& operator<< (std::ostream&o, const ccr::bvector&);
#endif // _CODECRYPT_H_

View file

@ -211,3 +211,13 @@ bool matrix::mult_vec_right (const bvector&a, bvector&r)
if (a[i]) r.add (item (i) );
return true;
}
bool matrix::set_block (uint x, uint y, const matrix&b)
{
uint h = b.height(), w = b.width();
if (width() < x + w) return false;
if (height() < y + h) return false;
for (uint i = 0; i < w; ++i)
for (uint j = 0; j < h; ++j) item (x + i, y + j) = b.item (i, j);
return true;
}

View file

@ -145,8 +145,8 @@ int privkey::sign (const bvector&in, bvector&out, uint delta, uint attempts, prn
epos[i] = rng.random (s);
/* we don't care about (unlikely) error bit collisions
(they actually don't harm anything) */
if (!e[epos[i]]) synd.add (h[epos[i]]);
e[epos[i]] = 1;
synd.add (h[epos[i]]);
}
compute_error_locator (synd, fld, g, sqInv, loc);

155
lib/mce_oc.cpp Normal file
View file

@ -0,0 +1,155 @@
#include "codecrypt.h"
using namespace ccr;
using namespace ccr::mce_oc;
#include "decoding.h"
int mce_oc::generate (pubkey&pub, privkey&priv, prng&rng, uint m, uint t, uint n)
{
priv.fld.create (m);
uint subplain_size = priv.fld.n - (m * t),
codeword_size = (n * subplain_size) + (m * t);
//prepare resulting generator matrix
matrix g;
g.resize (codeword_size);
for (uint i = 0; i < codeword_size; ++i)
g[i].resize (subplain_size * n);
//generate n subcodes
priv.codes.resize (n);
for (uint i = 0; i < n; ++i) {
privkey::subcode& sc = priv.codes[i];
sc.g.generate_random_irreducible (t, priv.fld, rng);
sc.g.compute_goppa_check_matrix (sc.h, priv.fld);
matrix subg;
while (!sc.h.create_goppa_generator (subg, sc.hperm, rng) );
g.set_block (subplain_size * i, subplain_size * i, subg);
}
//scramble matrix
matrix S;
S.generate_random_invertible (g.height(), rng);
S.compute_inversion (priv.Sinv);
//scramble permutation
permutation P;
P.generate_random (g.width(), rng);
P.compute_inversion (priv.Pinv);
//public key
pub.n = n;
pub.t = t;
S.mult (g);
P.permute (S, pub.G);
return 0;
}
int privkey::prepare ()
{
for (uint i = 0; i < codes.size(); ++i) {
codes[i].g.compute_goppa_check_matrix (codes[i].h, fld);
codes[i].g.compute_square_root_matrix (codes[i].sqInv, fld);
}
return 0;
}
int privkey::sign (const bvector&in, bvector&out, uint delta, uint attempts, prng&rng)
{
if (in.size() != hash_size() ) return 2;
if (!codes.size() ) return 2;
//remove permutation
bvector inp;
Pinv.permute (in, inp);
//decoding helpers
bvector e, e2, synd, synd_orig, cw, cwc, plain;
std::vector<uint> epos;
permutation hpermInv;
polynomial loc;
uint i, t;
plain.clear();
//decode the rest
for (uint ci = 0; ci < codes.size(); ++ci) {
uint mt = fld.m * codes[ci].g.degree(),
subplain_size = fld.n - mt;
e.clear();
e.resize (fld.n, 0);
epos.resize (delta, 0);
//decode first subcode
cw.clear();
if (ci == 0)
cw.insert (cw.end(), inp.begin(), inp.begin() + fld.n);
else {
cw.resize (mt, 0);
bvector::iterator tmp = inp.begin();
tmp += (ci * subplain_size) + mt;
cw.insert (cw.end(), tmp, tmp + subplain_size);
}
//compute syndrome with no extra errors
codes[ci].hperm.compute_inversion (hpermInv);
hpermInv.permute (cw, cwc); //canonical
codes[ci].h.mult_vec_right (cwc, synd_orig);
for (t = 0; t < attempts; ++t) {
//compute syndrome with extra errors
synd = synd_orig;
for (i = 0; i < delta; ++i) {
epos[i] = rng.random (fld.n);
if (!e[epos[i]]) synd.add (codes[ci].h[epos[i]]);
e[epos[i]] = 1;
}
compute_error_locator (synd, fld,
codes[ci].g,
codes[ci].sqInv, loc);
if (evaluate_error_locator_trace (loc, e2, fld) ) {
cwc.add (e);
cwc.add (e2);
codes[ci].hperm.permute (cwc, cw);
plain.insert (plain.end(), cw.begin(),
cw.begin() + (fld.n - (fld.m * codes[ci].g.degree() ) ) );
break;
}
for (i = 0; i < delta; ++i) {
e[epos[i]] = 0;
}
}
if (t >= attempts) //decoding failed
return 1;
}
Sinv.mult_vecT_left (plain, out);
return 0;
}
int pubkey::verify (const bvector&in, const bvector&hash, uint delta)
{
bvector tmp;
if (!G.mult_vecT_left (in, tmp) ) return 2; //sizing problem
if (hash.size() != tmp.size() ) return 1; //invalid hash size
tmp.add (hash);
if (tmp.hamming_weight() > n* (t + delta) ) return 1; //too far
return 0;
}

34
lib/mce_qd.cpp Normal file
View file

@ -0,0 +1,34 @@
#include "codecrypt.h"
using namespace ccr;
using namespace ccr::mce_qd;
#include "decoding.h"
int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, uint m, uint t)
{
return 0;
}
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
{
uint s = cipher_size();
if (t > s) return 1;
if (in.size() != plain_size() ) return 2;
return 0;
}
int privkey::decrypt (const bvector&in, bvector&out)
{
if (in.size() != cipher_size() ) return 2;
return 0;
}
int privkey::prepare ()
{
return 0;
}

View file

@ -24,22 +24,18 @@ int main()
primitiverng r;
r.seed (0);
ccr::mce::privkey priv;
ccr::mce::pubkey pub;
ccr::mce::generate (pub, priv, r, 7, 2);
ccr::mce_oc::privkey priv;
ccr::mce_oc::pubkey pub;
ccr::mce_oc::generate (pub, priv, r, 7, 2, 8);
priv.prepare();
cout << "PRIVATE KEY" << endl;
cout << priv.fld;
cout << priv.hperm;
cout << priv.Pinv;
cout << priv.Sinv;
cout << priv.g;
cout << "PUBLIC KEY" << endl;
cout << pub.t << endl;
cout << pub.G;
#if 0
/* mce encryption test */
ccr::bvector plain;
plain.resize (pub.plain_size(), 0);
plain[0] = 1;
@ -50,18 +46,19 @@ int main()
cout << plain;
ccr::bvector cipher;
pub.encrypt (plain, cipher, r);
//pub.encrypt (plain, cipher, r);
pub.encrypt (plain, cipher, r, 10);
cout << "CIPHERTEXT" << endl;
cout << cipher;
priv.prepare();
ccr::bvector result;
priv.decrypt (cipher, result);
cout << "DECRYPTED" << endl;
cout << result;
#endif
/* signature test */
@ -73,9 +70,9 @@ int main()
hash[2] = 1;
cout << "SIGNING" << endl << hash;
priv.sign (hash, signature, 3, priv.hash_size() *priv.hash_size(), r);
priv.sign (hash, signature, 2, priv.hash_size() *priv.hash_size(), r);
cout << "SIGNATURE" << endl << signature;
if (pub.verify (signature, hash, 3) )
if (pub.verify (signature, hash, 2) )
cout << "VERIFY FAIL" << endl;
else cout << "VERIFY OK" << endl;
return 0;