implement circulant multiplication by FFT +tooling
The thing in now used in mce_qcmdpc where possible. Also, some parameter tuning.
This commit is contained in:
parent
23cd287372
commit
3f625e3690
|
@ -5,7 +5,7 @@
|
|||
NAME="ccr"
|
||||
COMMON_CPPFLAGS="-I/usr/local/include"
|
||||
COMMON_CFLAGS="-Wall"
|
||||
COMMON_CXXFLAGS="${COMMON_CFLAGS}"
|
||||
COMMON_CXXFLAGS="${COMMON_CFLAGS} -std=c++11"
|
||||
COMMON_LDFLAGS="-L/usr/local/lib"
|
||||
COMMON_LDADD=""
|
||||
|
||||
|
@ -28,7 +28,7 @@ echo "${NAME}_CPPFLAGS = -I\$(srcdir)/$i/ ${COMMON_CPPFLAGS}" >>$OUT
|
|||
echo "${NAME}_CFLAGS = ${COMMON_CFLAGS}" >>$OUT
|
||||
echo "${NAME}_CXXFLAGS = ${COMMON_CXXFLAGS}" >>$OUT
|
||||
echo "${NAME}_LDFLAGS = ${COMMON_LDFLAGS}" >>$OUT
|
||||
echo "${NAME}_LDADD = -lgmp @CRYPTOPP_LIBS@ ${COMMON_LDADD} " >>$OUT
|
||||
echo "${NAME}_LDADD = -lgmp -lfftw3 -lm @CRYPTOPP_LIBS@ ${COMMON_LDADD} " >>$OUT
|
||||
|
||||
libtoolize --force && aclocal && autoconf && automake --add-missing
|
||||
|
||||
|
|
|
@ -18,6 +18,10 @@ AC_PROG_INSTALL
|
|||
AC_CHECK_HEADERS([gmp.h], , AC_MSG_ERROR([Codecrypt requires gmp.h]))
|
||||
AC_CHECK_LIB(gmp, __gmpz_init, , AC_MSG_ERROR([Codecrypt requires libgmp]))
|
||||
|
||||
#check for FFTW library presnece
|
||||
AC_CHECK_HEADERS([fftw3.h], , AC_MSG_ERROR([Codecrytp requires fftw3.h]))
|
||||
AC_CHECK_LIB(fftw3, fftw_plan_dft_1d, , AC_MSG_ERROR([Codecrypt requires libfftw3]))
|
||||
|
||||
#check whether to build with crypto++
|
||||
AC_ARG_WITH([cryptopp],
|
||||
AC_HELP_STRING([--with-cryptopp],[Build algorithms that need Crypto++ support]),
|
||||
|
|
|
@ -108,16 +108,15 @@ algspectable_t& algspectable()
|
|||
static bool init = false;
|
||||
|
||||
if (!init) {
|
||||
table["enc"] = "MCEQD128FO-CUBE256-CHACHA20";
|
||||
table["enc-strong"] = "MCEQD192FO-CUBE384-CHACHA20";
|
||||
table["enc-strongest"] = "MCEQD256FO-CUBE512-CHACHA20";
|
||||
table["enc"] = "MCEQCMDPC128FO-CUBE256-CHACHA20";
|
||||
table["enc-256"] = "MCEQCMDPC256FO-CUBE512-CHACHA20";
|
||||
|
||||
table["sig"] = "FMTSEQ128C-CUBE256-CUBE128";
|
||||
table["sig-strong"] = "FMTSEQ192C-CUBE384-CUBE192";
|
||||
table["sig-strongest"] = "FMTSEQ256C-CUBE512-CUBE256";
|
||||
table["sig-192"] = "FMTSEQ192C-CUBE384-CUBE192";
|
||||
table["sig-256"] = "FMTSEQ256C-CUBE512-CUBE256";
|
||||
|
||||
table["sym"] = "chacha20,sha256";
|
||||
table["sym-strong"] = "chacha20,xsynd,arcfour,cube512,sha512";
|
||||
table["sym-combined"] = "chacha20,xsynd,arcfour,cube512,sha512";
|
||||
|
||||
init = true;
|
||||
}
|
||||
|
|
|
@ -419,21 +419,21 @@ int algo_mceqcmdpc##name::create_keypair (sencode**pub, sencode**priv, prng&rng)
|
|||
|
||||
#if HAVE_CRYPTOPP==1
|
||||
|
||||
mceqcmdpc_create_keypair_func (128, 9857, 2, 71, 134, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (256, 32771, 2, 137, 264, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (128cha, 9857, 2, 71, 134, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (256cha, 32771, 2, 137, 264, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (128xs, 9857, 2, 71, 134, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (256xs, 32771, 2, 137, 264, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (128, 9857, 2, 71, 134, 60, 5)
|
||||
mceqcmdpc_create_keypair_func (256, 32771, 2, 137, 264, 60, 8)
|
||||
mceqcmdpc_create_keypair_func (128cha, 9857, 2, 71, 134, 60, 5)
|
||||
mceqcmdpc_create_keypair_func (256cha, 32771, 2, 137, 264, 60, 8)
|
||||
mceqcmdpc_create_keypair_func (128xs, 9857, 2, 71, 134, 60, 5)
|
||||
mceqcmdpc_create_keypair_func (256xs, 32771, 2, 137, 264, 60, 8)
|
||||
|
||||
#endif //HAVE_CRYPTOPP==1
|
||||
|
||||
mceqcmdpc_create_keypair_func (128cube, 9857, 2, 71, 134, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (256cube, 32771, 2, 137, 264, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (128cubecha, 9857, 2, 71, 134, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (256cubecha, 32771, 2, 137, 264, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (128cubexs, 9857, 2, 71, 134, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (256cubexs, 32771, 2, 137, 264, 60, 7)
|
||||
mceqcmdpc_create_keypair_func (128cube, 9857, 2, 71, 134, 60, 5)
|
||||
mceqcmdpc_create_keypair_func (256cube, 32771, 2, 137, 264, 60, 8)
|
||||
mceqcmdpc_create_keypair_func (128cubecha, 9857, 2, 71, 134, 60, 5)
|
||||
mceqcmdpc_create_keypair_func (256cubecha, 32771, 2, 137, 264, 60, 8)
|
||||
mceqcmdpc_create_keypair_func (128cubexs, 9857, 2, 71, 134, 60, 5)
|
||||
mceqcmdpc_create_keypair_func (256cubexs, 32771, 2, 137, 264, 60, 8)
|
||||
|
||||
#define mceqcmdpc_create_encdec_func(name,bs,bc,errcount,hash_type,pad_hash_type,scipher,ranksize) \
|
||||
int algo_mceqcmdpc##name::encrypt (const bvector&plain, bvector&cipher, \
|
||||
|
|
|
@ -214,6 +214,91 @@ bool bvector::zero() const
|
|||
return true;
|
||||
}
|
||||
|
||||
bool bvector::one() const
|
||||
{
|
||||
//zero padding again
|
||||
for (size_t i = 0; i < _data.size(); ++i) if (i == 0) {
|
||||
if (_data[i] != 1) return false;
|
||||
} else if (_data[i] != 0) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
int bvector::degree()
|
||||
{
|
||||
//find the position of the last non-zero item
|
||||
int r;
|
||||
for (r = _data.size() - 1; r >= 0; --r) if (_data[r]) break;
|
||||
if (r < 0) return -1; //only zeroes.
|
||||
uint64_t tmp = _data[r];
|
||||
int res = 64 * r;
|
||||
while (tmp > 1) {
|
||||
++res;
|
||||
tmp >>= 1;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
void bvector::poly_strip()
|
||||
{
|
||||
resize (degree() + 1);
|
||||
}
|
||||
|
||||
bvector bvector::ext_gcd (const bvector&b, bvector&s0, bvector&t0)
|
||||
{
|
||||
//result gcd(this,b) = s*this + t*b
|
||||
bvector s1, t1;
|
||||
s0.clear();
|
||||
s1.clear();
|
||||
t0.clear();
|
||||
t1.clear();
|
||||
s0.resize (1, 1);
|
||||
t1.resize (1, 1);
|
||||
bvector r1 = b;
|
||||
bvector r0 = *this;
|
||||
|
||||
for (;;) {
|
||||
int d0 = r0.degree();
|
||||
int d1 = r1.degree();
|
||||
//out ("r0" << r0 << "r1" << r1 << "s0" << s0 << "s1" << s1 << "t0" << t0 << "t1" << t1 << "d0=" << d0 << " d1=" << d1);
|
||||
if (d0 < 0) {
|
||||
s0.swap (s1);
|
||||
t0.swap (t1);
|
||||
return r1;
|
||||
}
|
||||
if (d1 < 0) {
|
||||
//this would result in reorganization and failure in
|
||||
//next step, return it the other way
|
||||
return r0;
|
||||
}
|
||||
if (d0 > d1) {
|
||||
//quotient is zero, reverse the thing manually
|
||||
s0.swap (s1);
|
||||
t0.swap (t1);
|
||||
r0.swap (r1);
|
||||
continue;
|
||||
}
|
||||
|
||||
//we only consider quotient in form q=x^(log q)
|
||||
//("only subtraction, not divmod, still slow")
|
||||
int logq = d1 - d0;
|
||||
|
||||
//r(i+1)=r(i-1)-q*r(i)
|
||||
//s(i+1)=s(i-1)-q*s(i)
|
||||
//t(i+1)=t(i-1)-q*t(i)
|
||||
r1.add_offset (r0, logq);
|
||||
s1.add_offset (s0, logq);
|
||||
t1.add_offset (t0, logq);
|
||||
r1.poly_strip();
|
||||
s1.poly_strip();
|
||||
t1.poly_strip();
|
||||
|
||||
//"rotate" the thing to new positions
|
||||
r1.swap (r0);
|
||||
s1.swap (s0);
|
||||
t1.swap (t0);
|
||||
}
|
||||
}
|
||||
|
||||
void bvector::from_poly_cotrace (const polynomial&r, gf2m&fld)
|
||||
{
|
||||
clear();
|
||||
|
|
|
@ -100,11 +100,11 @@ private:
|
|||
return s >> 6;
|
||||
}
|
||||
|
||||
void fix_padding();
|
||||
|
||||
protected:
|
||||
_ccr_declare_vector_item
|
||||
public:
|
||||
void fix_padding();
|
||||
bvector() {
|
||||
_size = 0;
|
||||
}
|
||||
|
@ -176,13 +176,15 @@ public:
|
|||
uint hamming_weight();
|
||||
void append (const bvector&);
|
||||
void add (const bvector&);
|
||||
void add_offset (const bvector&, size_t offset_from, size_t offset_to, size_t cnt = 0);
|
||||
void add_offset (const bvector&,
|
||||
size_t offset_from, size_t offset_to,
|
||||
size_t cnt = 0);
|
||||
|
||||
void add_offset (const bvector&, size_t offset_to);
|
||||
void add_range (const bvector&, size_t, size_t);
|
||||
void rot_add (const bvector&, size_t);
|
||||
void set_block (const bvector&, size_t);
|
||||
void get_block (size_t, size_t, bvector&) const;
|
||||
void get_block (size_t start, size_t cnt, bvector&) const;
|
||||
uint and_hamming_weight (const bvector&) const;
|
||||
|
||||
inline bool operator* (const bvector&a) const {
|
||||
|
@ -191,6 +193,11 @@ public:
|
|||
}
|
||||
|
||||
bool zero() const;
|
||||
bool one() const;
|
||||
|
||||
int degree();
|
||||
void poly_strip();
|
||||
bvector ext_gcd (const bvector&b, bvector&s, bvector&t);
|
||||
|
||||
void from_poly_cotrace (const polynomial&, gf2m&);
|
||||
|
||||
|
|
71
src/fft.cpp
Normal file
71
src/fft.cpp
Normal file
|
@ -0,0 +1,71 @@
|
|||
|
||||
/*
|
||||
* This file is part of Codecrypt.
|
||||
*
|
||||
* Codecrypt is free software: you can redistribute it and/or modify it
|
||||
* under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or (at
|
||||
* your option) any later version.
|
||||
*
|
||||
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
* License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License
|
||||
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "fft.h"
|
||||
|
||||
#include <complex.h>
|
||||
#include <fftw3.h>
|
||||
#include <math.h>
|
||||
|
||||
/*
|
||||
* FFTW wraparound for performing fast multiplication of cyclic matrices.
|
||||
*
|
||||
* It would probably be cool to save wisdom manually or generate better plans,
|
||||
* but since we're usually doing less than 10 FFTs for each run of codecrypt,
|
||||
* the thing doesn't pay off. Feel free to implement it.
|
||||
*/
|
||||
|
||||
#include "iohelpers.h"
|
||||
|
||||
void fft (bool forward, std::vector<dcx>&in, std::vector<dcx>&out)
|
||||
{
|
||||
fftw_plan p;
|
||||
out.resize (in.size(), dcx (0, 0));
|
||||
|
||||
p = fftw_plan_dft_1d (in.size(),
|
||||
//Cin, Cout,
|
||||
reinterpret_cast<fftw_complex*> (in.data()),
|
||||
reinterpret_cast<fftw_complex*> (out.data()),
|
||||
forward ? FFTW_FORWARD : FFTW_BACKWARD,
|
||||
FFTW_ESTIMATE);
|
||||
|
||||
if (!forward)
|
||||
for (size_t i = 0; i < out.size(); ++i)
|
||||
out[i] /= (double) out.size();
|
||||
|
||||
fftw_execute (p);
|
||||
fftw_destroy_plan (p);
|
||||
}
|
||||
|
||||
void fft (bvector&inb, std::vector<dcx>&out)
|
||||
{
|
||||
std::vector<dcx> in;
|
||||
in.resize (inb.size(), dcx (0, 0));
|
||||
for (size_t i = 0; i < inb.size(); ++i) if (inb[i]) in[i] = dcx (1, 0);
|
||||
fft (true, in, out);
|
||||
}
|
||||
|
||||
void fft (std::vector<dcx>&in, bvector&outb)
|
||||
{
|
||||
std::vector<dcx> out;
|
||||
fft (false, in, out);
|
||||
outb.resize (out.size());
|
||||
outb.fill_zeros();
|
||||
for (size_t i = 0; i < out.size(); ++i)
|
||||
if (1 & (int) round (out[i].real())) outb[i] = 1;
|
||||
}
|
32
src/fft.h
Normal file
32
src/fft.h
Normal file
|
@ -0,0 +1,32 @@
|
|||
|
||||
/*
|
||||
* This file is part of Codecrypt.
|
||||
*
|
||||
* Codecrypt is free software: you can redistribute it and/or modify it
|
||||
* under the terms of the GNU Lesser General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or (at
|
||||
* your option) any later version.
|
||||
*
|
||||
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||||
* License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public License
|
||||
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef _ccr_fft_h_
|
||||
#define _ccr_fft_h_
|
||||
|
||||
#include "bvector.h"
|
||||
#include <complex>
|
||||
|
||||
typedef std::complex<double> dcx;
|
||||
void fft (bool forward, std::vector<dcx>&in, std::vector<dcx>&out);
|
||||
|
||||
//direct conversion from/to GF(2)
|
||||
void fft (bvector&in, std::vector<dcx>&out);
|
||||
void fft (std::vector<dcx>&in, bvector&out);
|
||||
|
||||
#endif
|
|
@ -18,78 +18,99 @@
|
|||
|
||||
#include "mce_qcmdpc.h"
|
||||
|
||||
#include "gf2m.h"
|
||||
#include "polynomial.h"
|
||||
#include "fft.h"
|
||||
#include <cmath>
|
||||
|
||||
using namespace mce_qcmdpc;
|
||||
using namespace std;
|
||||
|
||||
#include "iohelpers.h"
|
||||
#include "ios.h"
|
||||
|
||||
int mce_qcmdpc::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||
uint block_size, uint block_count, uint wi,
|
||||
uint t, uint rounds, uint delta)
|
||||
{
|
||||
uint i, j;
|
||||
priv.H.resize (block_count);
|
||||
|
||||
if (wi > block_size / 2) return 1; //safety
|
||||
|
||||
priv.H.resize (block_count);
|
||||
pub.G.resize (block_count - 1);
|
||||
|
||||
/*
|
||||
* Trick. Cyclomatic matrix of size n is invertible if a
|
||||
* polynomial that's made up from its first row is coprime to
|
||||
* (x^n-1), the polynomial inversion and matrix inversion are
|
||||
* then isomorphic.
|
||||
* Cyclic matrices are diagonalizable by FFT so this stuff gets pretty
|
||||
* fast. Otherwise they behave like simple polynomials over GF(2) mod
|
||||
* (1+x^n).
|
||||
*/
|
||||
gf2m gf;
|
||||
gf.create (1); //binary
|
||||
polynomial xmm1; //x^m-1
|
||||
xmm1.resize (block_size + 1, 0);
|
||||
xmm1[0] = 1;
|
||||
xmm1[block_size] = 1;
|
||||
polynomial last_inv_H;
|
||||
|
||||
vector<dcx> H_last_inv;
|
||||
|
||||
for (;;) {
|
||||
//retry generating the rightmost block until it is invertible
|
||||
polynomial g;
|
||||
g.resize (block_size, 0);
|
||||
bvector Hb;
|
||||
Hb.resize (block_size, 0);
|
||||
for (i = 0; i < wi; ++i)
|
||||
for (uint pos = rng.random (block_size);
|
||||
g[pos] ? 1 : (g[pos] = 1, 0);
|
||||
Hb[pos] ? 1 : (Hb[pos] = 1, 0);
|
||||
pos = rng.random (block_size));
|
||||
|
||||
//try if it is coprime to (x^n-1)
|
||||
polynomial gcd = g.gcd (xmm1, gf);
|
||||
if (!gcd.one()) continue; //it isn't.
|
||||
bvector xnm1, Hb_inv, tmp;
|
||||
xnm1.resize (block_size + 1, 0);
|
||||
xnm1[0] = 1;
|
||||
xnm1[block_size] = 1; //poly (x^n-1) in gf(2)
|
||||
|
||||
//if it is, save it to matrix (in "reverse" order for columns)
|
||||
priv.H[block_count - 1].resize (block_size, 0);
|
||||
for (i = 0; i < block_size && i < g.size(); ++i)
|
||||
priv.H[block_count - 1][i] = g[ (-i) % block_size];
|
||||
/*
|
||||
* TODO This is quadratic, speed it up.
|
||||
*
|
||||
* No one actually cares about keygen speed yet, but this can
|
||||
* be done in O(n*log(n)) using Schönhage-Strassen algorithm.
|
||||
* If speed is required (e.g. for SPF in some ssl replacement,
|
||||
* *wink* *wink*), use libNTL's GF2X.
|
||||
*
|
||||
* NTL one uses simpler Karatsuba with ~O(n^1.58) which should
|
||||
* (according to wikipedia) be faster for sizes under 32k bits
|
||||
* because of constant factors involved.
|
||||
*/
|
||||
bvector rem = Hb.ext_gcd (xnm1, Hb_inv, tmp);
|
||||
if (!rem.one()) continue; //not invertible, retry
|
||||
if (Hb_inv.size() > block_size) continue; //totally weird.
|
||||
Hb_inv.resize (block_size, 0); //pad polynomial with zeros
|
||||
|
||||
//invert it, save for later and succeed.
|
||||
g.inv (xmm1, gf);
|
||||
last_inv_H = g;
|
||||
break;
|
||||
//if it is, save it to matrix
|
||||
priv.H[block_count - 1] = Hb;
|
||||
|
||||
//precompute the fft of the inverted last block
|
||||
fft (Hb_inv, H_last_inv);
|
||||
|
||||
break; //success
|
||||
}
|
||||
|
||||
//generate the rests of matrix blocks, fill the G right away.
|
||||
pub.G.resize (block_count - 1);
|
||||
for (i = 0; i < block_count - 1; ++i) {
|
||||
polynomial hi;
|
||||
hi.resize (block_size, 0);
|
||||
bvector Hb;
|
||||
Hb.resize (block_size, 0);
|
||||
|
||||
//generate the polynomial corresponding to the first row
|
||||
for (j = 0; j < wi; ++j)
|
||||
for (uint pos = rng.random (block_size);
|
||||
hi[pos] ? 1 : (hi[pos] = 1, 0);
|
||||
Hb[pos] ? 1 : (Hb[pos] = 1, 0);
|
||||
pos = rng.random (block_size));
|
||||
|
||||
//save it to H
|
||||
priv.H[i].resize (block_size);
|
||||
for (j = 0; j < block_size; ++j) priv.H[i][j] = hi[ (-j) % block_size];
|
||||
priv.H[i] = Hb;
|
||||
|
||||
//compute inv(H[last])*H[i]
|
||||
hi.mult (last_inv_H, gf);
|
||||
hi.mod (xmm1, gf);
|
||||
vector<dcx> H;
|
||||
fft (Hb, H);
|
||||
for (j = 0; j < block_size; ++j)
|
||||
H[j] *= H_last_inv[j];
|
||||
fft (H, Hb);
|
||||
|
||||
//save it to G
|
||||
pub.G[i].resize (block_size);
|
||||
for (j = 0; j < block_size; ++j) pub.G[i][j] = hi[j % block_size];
|
||||
pub.G[i] = Hb;
|
||||
pub.G[i].resize (block_size, 0);
|
||||
//for (j = 0; j < block_size; ++j) pub.G[i][j] = Hb[j];
|
||||
}
|
||||
|
||||
//save the target params
|
||||
|
@ -128,18 +149,37 @@ int pubkey::encrypt (const bvector&in, bvector&out, const bvector&errors)
|
|||
uint ps = plain_size();
|
||||
if (in.size() != ps) return 1;
|
||||
uint bs = G[0].size();
|
||||
for (uint i = 1; i < G.size(); ++i) if (G[i].size() != bs) return 1; //prevent mangled keys
|
||||
uint blocks = G.size();
|
||||
for (uint i = 1; i < blocks; ++i)
|
||||
if (G[i].size() != bs) return 1; //prevent mangled keys
|
||||
|
||||
//first, the checksum part
|
||||
bvector bcheck;
|
||||
vector<dcx> bcheck, Pd, Gd;
|
||||
bcheck.resize (bs, dcx (0, 0)); //initially zero
|
||||
bvector block;
|
||||
|
||||
//G stores first row(s) of the circulant matrix blocks, proceed row-by-row and construct the checkum
|
||||
for (uint i = 0; i < ps; ++i)
|
||||
if (in[i]) bcheck.rot_add (G[ (i % ps) / bs], i % bs);
|
||||
/*
|
||||
* G stores first row(s) of the circulant matrix blocks. Proceed block
|
||||
* by block and construct the checksum.
|
||||
*
|
||||
* On a side note, it would be cool to store the G already pre-FFT'd,
|
||||
* but the performance gain wouldn't be interesting enough to
|
||||
* compensate for 128 times larger public key (each bit would get
|
||||
* expanded to two doubles). Do it if you want to encrypt bulk data.
|
||||
*/
|
||||
|
||||
for (size_t i = 0; i < blocks; ++i) {
|
||||
in.get_block (i * bs, bs, block);
|
||||
fft (block, Pd);
|
||||
fft (G[i], Gd);
|
||||
for (size_t j = 0; j < bs; ++j)
|
||||
bcheck[j] += Pd[j] * Gd[j];
|
||||
}
|
||||
|
||||
//compute the ciphertext
|
||||
out = in;
|
||||
out.append (bcheck);
|
||||
fft (bcheck, block); //get the checksum part
|
||||
out.append (block);
|
||||
out.add (errors);
|
||||
|
||||
return 0;
|
||||
|
@ -155,53 +195,73 @@ int privkey::decrypt (const bvector & in, bvector & out)
|
|||
|
||||
int privkey::decrypt (const bvector & in_orig, bvector & out, bvector & errors)
|
||||
{
|
||||
uint i;
|
||||
uint i, j;
|
||||
uint cs = cipher_size();
|
||||
|
||||
if (in_orig.size() != cs) return 1;
|
||||
uint bs;
|
||||
bs = H[0].size();
|
||||
uint bs = H[0].size();
|
||||
uint blocks = H.size();
|
||||
for (i = 1; i < blocks; ++i) if (H[i].size() != bs) return 2;
|
||||
|
||||
bvector in = in_orig; //we will modify this.
|
||||
|
||||
/*
|
||||
* probabilistic decoding!
|
||||
*/
|
||||
|
||||
//compute the syndrome first
|
||||
bvector syndrome;
|
||||
syndrome.resize (bs, 0);
|
||||
bvector in = in_orig; //we will modify it
|
||||
vector<dcx> synd_diag, tmp, Htmp;
|
||||
synd_diag.resize (bs, dcx (0, 0));
|
||||
|
||||
for (i = 0; i < cs; ++i) if (in[i])
|
||||
syndrome.rot_add (H[i / bs], (cs - i) % bs);
|
||||
//precompute the syndrome
|
||||
for (i = 0; i < blocks; ++i) {
|
||||
bvector b;
|
||||
b.resize (bs, 0);
|
||||
b.add_offset (in, bs * i, 0, bs);
|
||||
fft (b, tmp);
|
||||
fft (H[i], Htmp);
|
||||
for (j = 0; j < bs; ++j) synd_diag[j] += Htmp[j] * tmp[j];
|
||||
}
|
||||
|
||||
//minimize counts of unsatisfied equations by flipping
|
||||
std::vector<uint> unsatisfied;
|
||||
unsatisfied.resize (cs, 0);
|
||||
bvector (syndrome);
|
||||
fft (synd_diag, syndrome);
|
||||
|
||||
vector<unsigned> unsat;
|
||||
unsat.resize (cs, 0);
|
||||
|
||||
for (i = 0; i < rounds; ++i) {
|
||||
uint bit, max_unsat;
|
||||
bvector tmp;
|
||||
max_unsat = 0;
|
||||
for (bit = 0; bit < cs; ++bit) {
|
||||
tmp.fill_zeros();
|
||||
tmp.rot_add (H[bit / bs], (cs - bit) % bs);
|
||||
unsatisfied[bit] = tmp.and_hamming_weight (syndrome);
|
||||
if (unsatisfied[bit] > max_unsat) max_unsat = unsatisfied[bit];
|
||||
}
|
||||
|
||||
//TODO what about timing attacks?
|
||||
/*
|
||||
* count the correlations, abuse the sparsity of matrices.
|
||||
*
|
||||
* TODO this is the slowest part of the whole thing. It's all
|
||||
* probabilistic, maybe there could be some potential to speed
|
||||
* it up by discarding some (already missing) precision.
|
||||
*/
|
||||
|
||||
for (j = 0; j < cs; ++j) unsat[j] = 0;
|
||||
for (uint Hi = 0; Hi < cs; ++Hi)
|
||||
if (H[Hi / bs][Hi % bs]) {
|
||||
uint blk = Hi / bs;
|
||||
for (j = 0; j < bs; ++j)
|
||||
if (syndrome[j])
|
||||
++unsat[blk * bs +
|
||||
(j + cs - Hi) % bs];
|
||||
}
|
||||
|
||||
uint max_unsat = 0;
|
||||
for (j = 0; j < cs; ++j)
|
||||
if (unsat[j] > max_unsat) max_unsat = unsat[j];
|
||||
if (!max_unsat) break;
|
||||
//TODO what about timing attacks? :]
|
||||
|
||||
uint threshold = 0;
|
||||
if (max_unsat > delta) threshold = max_unsat - delta;
|
||||
|
||||
//TODO also timing (but it gets pretty statistically hard here I guess)
|
||||
uint flipped = 0;
|
||||
for (bit = 0; bit < cs; ++bit)
|
||||
if (unsatisfied[bit] > threshold) {
|
||||
for (uint bit = 0; bit < cs; ++bit)
|
||||
if (unsat[bit] > threshold) {
|
||||
in[bit] = !in[bit];
|
||||
syndrome.rot_add (H[bit / bs], (cs - bit) % bs);
|
||||
++flipped;
|
||||
syndrome.rot_add (H[bit / bs], bit % bs);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue