matrix operations

This commit is contained in:
Mirek Kratochvil 2012-04-02 11:14:54 +02:00
parent c47a651d0f
commit 53eb902f1b
4 changed files with 127 additions and 13 deletions

View file

@ -26,6 +26,8 @@ protected:
_ccr_declare_vector_item
public:
uint hamming_weight();
void add (const bvector&);
bool operator* (const bvector&); //dot product
};
/*
@ -47,12 +49,22 @@ class matrix : public std::vector<bvector>
protected:
_ccr_declare_vector_item
public:
matrix operator* (const matrix&);
uint width() const {
return size();
}
uint height() const {
if (size() ) return item (0).size();
return 0;
}
matrix operator* (const matrix&);
void mult (const matrix&);
void compute_transpose (matrix&);
bool compute_inversion (matrix&);
void generate_random_invertible (uint, prng&);
void unit (uint);
void compute_transpose (matrix&);
};
/*

View file

@ -9,3 +9,19 @@ uint bvector::hamming_weight()
return r;
}
void bvector::add (const bvector&a)
{
if (a.size() > size() ) resize (a.size(), 0);
for (uint i = 0; i < size(); ++i)
item (i) = item (i) ^ a[i];
}
bool bvector::operator* (const bvector&a)
{
bool r = 0;
uint s = size(), i;
if (s > a.size() ) s = a.size();
for (i = 0; i < s; ++i) r ^= (item (i) &a[i]);
return r;
}

View file

@ -5,21 +5,107 @@ using namespace ccr;
void matrix::unit (uint size)
{
clear();
resize (size);
for (uint i = 0; i < size; ++i) {
item (i).resize (size, 0);
item (i) [i] = 1;
}
}
bool matrix::compute_inversion (matrix&r)
matrix matrix::operator* (const matrix&a)
{
return false;
}
void matrix::generate_random_invertible (uint size, prng&rng)
{
matrix r = *this;
r.mult (a);
return r;
}
void matrix::compute_transpose (matrix&r)
{
uint h = height(), w = width(), i, j;
r.resize (h);
for (i = 0; i < h; ++i) {
r[i].resize (w);
for (j = 0; j < w; ++j) r[i][j] = item (j) [i];
}
}
void matrix::mult (const matrix&right)
{
//trivial multiply. TODO strassen algo for larger matrices.
matrix leftT;
compute_transpose (leftT);
uint w = right.width(), h = leftT.width(), i, j;
resize (w);
for (i = 0; i < w; ++i) {
item (i).resize (h);
for (j = 0; j < h; ++j) item (i) [j] = leftT[j] * right[i];
}
}
bool matrix::compute_inversion (matrix&res)
{
//gauss-jordan elimination with inversion of the second matrix.
//we are computing with transposed matrices for simpler row ops
uint s = width();
if (s != height() ) return false;
matrix m, r;
r.unit (s);
this->compute_transpose (m);
uint i, j;
//gauss step, create a lower triangular out of m, mirror to r
for (i = 0; i < s; ++i) {
//we need pivoting 1 at [i][i]. If there's none, get it below.
if (m[i][i] != 1) {
for (j = i + 1; j < s; ++j) if (m[j][i] == 1) break;
if (j == s) return false; //noninvertible
m[i].add (m[j]);
r[i].add (r[j]);
}
//remove 1's below
for (j = i + 1; j < s; ++j) if (m[j][i]) {
m[j].add (m[i]);
r[j].add (r[i]);
}
}
//jordan step (we do it forward because it doesn't matter on GF(2))
for (i = 0; i < s; ++i)
for (j = 0; j < i; ++j)
if (m[j][i]) {
m[j].add (m[i]);
r[j].add (r[i]);
}
r.compute_transpose (res);
return true;
}
void matrix::generate_random_invertible (uint size, prng & rng)
{
matrix lt, ut;
uint i, j;
// random lower triagonal
lt.resize (size);
for (i = 0; i < size; ++i) {
lt[i].resize (size);
lt[i][i] = 1;
for (j = i + 1; j < size; ++j) lt[i][j] = rng.random (2);
}
// random upper triagonal
ut.resize (size);
for (i = 0; i < size; ++i) {
ut[i].resize (size);
ut[i][i] = 1;
for (j = 0; j < i; ++j) ut[i][j] = rng.random (2);
}
lt.mult (ut);
// permute
permutation p;
p.generate_random (size, rng);
p.permute (lt, *this);
}

View file

@ -95,7 +95,7 @@ bool polynomial::is_irreducible()
for (uint i = 1; i <= n / 2; ++i) {
t = xi;
t.mult (xi); //because mult would destroy xi on xi.mult(xi)
t.mod(*this);
t.mod (*this);
xi = t;
t.add (xmodf);