diff --git a/include/codecrypt.h b/include/codecrypt.h index 5b56da3..d7e2cbc 100644 --- a/include/codecrypt.h +++ b/include/codecrypt.h @@ -4,6 +4,13 @@ #include +//STL wraparound, because writing (*this)[i] everywhere is clumsy +#define _ccr_declare_vector_item \ + inline reference item(size_type n) \ + { return (*this)[n]; }; \ + inline const_reference item(size_type n) const \ + { return (*this)[n]; }; + namespace ccr { @@ -15,10 +22,8 @@ typedef unsigned int uint; */ class bvector : public std::vector { - //STL wraparound, because writing (*this)[i] is clumsy - inline reference item (size_type n) { - return (*this) [n]; - } +protected: + _ccr_declare_vector_item public: uint hamming_weight(); }; @@ -39,9 +44,8 @@ public: */ class matrix : public std::vector { - inline reference item (size_type n) { - return (*this) [n]; - } +protected: + _ccr_declare_vector_item public: matrix operator* (const matrix&); @@ -57,9 +61,8 @@ public: */ class permutation : public std::vector { - inline reference item (size_type n) { - return (*this) [n]; - } +protected: + _ccr_declare_vector_item public: void compute_inversion (permutation&); @@ -75,13 +78,16 @@ public: */ class polynomial : public bvector { - inline reference item (size_type n) { - return (*this) [n]; - } public: + void strip(); + uint degree() const; + void add (const polynomial&); + void mod (const polynomial&); + void mult (const polynomial&); + polynomial gcd (polynomial); bool is_irreducible(); - void generate_random_irreducible (uint n, prng&); + vector operator<< (uint); }; /* diff --git a/lib/polynomial.cpp b/lib/polynomial.cpp index 34dc41e..7a69f05 100644 --- a/lib/polynomial.cpp +++ b/lib/polynomial.cpp @@ -3,14 +3,100 @@ using namespace ccr; +uint polynomial::degree() const +{ + uint r = -1; + for (uint i = 0; i < size(); ++i) if (item (i) ) r = i; + return r; +} + +void polynomial::strip() +{ + resize (degree() + 1); +} + +void polynomial::add (const polynomial&f) +{ + uint df = f.degree(); + if (df > degree() ) resize (df + 1); + for (uint i = 0; i <= df; ++i) item (i) = item (i) ^ f[i]; +} + +void polynomial::mod (const polynomial&f) +{ + uint df = f.degree(); + uint d; + // while there's place to substract, reduce by x^(d-df)-multiply of f + while ( (d = degree() ) >= df) { + for (uint i = 0; i <= df; ++i) + item (i + d - df) = item (i + d - df) ^ f[i]; + } + strip(); +} + +void polynomial::mult (const polynomial&b) +{ + polynomial a = *this; + clear(); + uint i, j, da, db; + da = a.degree(); + db = b.degree(); + resize (da + db + 1, 0); + for (i = 0; i <= da; ++i) + if (a[i]) for (j = 0; j <= db; ++j) + item (i + j) = item (i + j) ^ b[j]; +} + +polynomial polynomial::gcd (polynomial b) +{ + polynomial a = *this; + + //eukleides + if (a.degree() < 0) return b; + for (;;) { + if (b.degree() < 0) return a; + a.mod (b); + if (a.degree() < 0) return b; + b.mod (a); + } + //unreachable + return polynomial(); +} + bool polynomial::is_irreducible() { + //Ben-Or irreducibility test + polynomial xi; //x^(2^i) in our case + polynomial xmodf, t; - return false; + xmodf.resize (2); //precompute (x mod f) + xmodf[0] = 0; + xmodf[1] = 1; //x + xmodf.mod (*this); //mod f + + uint n = degree(); + for (uint i = 1; i <= n / 2; ++i) { + t = xi; + t.mult (xi); //because mult would destroy xi on xi.mult(xi) + xi = t; + t.add (xmodf); + + t = t.gcd (*this); + if (t.degree() != 0) //gcd(f,x^2^i - x mod f) != 1 + return false; + } + return true; } -void polynomial::generate_random_irreducible (uint size, prng&rng) +void polynomial::generate_random_irreducible (uint s, prng & rng) { - + resize (s + 1); + item (s) = 1; //degree s + item (0) = 1; //not divisible by x^1 + for (uint i = 1; i < s; ++i) item (i) = rng.random (2); + while (!is_irreducible() ) { + uint pos = 1 + rng.random (s - 1); + item (pos) = !item (pos); + } }