From 781ea21513f18e58f739471ea2ed18d0c249c297 Mon Sep 17 00:00:00 2001 From: Mirek Kratochvil Date: Sun, 8 Apr 2012 14:09:44 +0200 Subject: [PATCH] polynomial fixes irreducibility, goppa check matrix --- include/codecrypt.h | 1 + lib/polynomial.cpp | 54 +++++++++++++++++++++++---------------------- 2 files changed, 29 insertions(+), 26 deletions(-) diff --git a/include/codecrypt.h b/include/codecrypt.h index 0916557..d3efb74 100644 --- a/include/codecrypt.h +++ b/include/codecrypt.h @@ -134,6 +134,7 @@ public: void strip(); int degree() const; bool zero() const; + bool one() const; void shift (uint); uint eval (uint, gf2m&) const; diff --git a/lib/polynomial.cpp b/lib/polynomial.cpp index b5c3efc..6edb8f9 100644 --- a/lib/polynomial.cpp +++ b/lib/polynomial.cpp @@ -21,6 +21,12 @@ bool polynomial::zero() const return true; } +bool polynomial::one() const +{ + if (degree() != 0) return false; + return item (0) == 1; +} + void polynomial::add (const polynomial&f, gf2m&fld) { int df = f.degree(); @@ -107,14 +113,17 @@ bool polynomial::is_irreducible (gf2m&fld) const uint d = degree(); for (uint i = 1; i <= d / 2; ++i) { + for (uint j = 0; j < fld.m; ++j) { + t = xi; + t.mult (xi, fld); + t.mod (*this, fld); + xi.swap (t); + } t = xi; - t.mult (xi, fld); //because mult would destroy xi on xi.mult(xi) - t.mod (*this, fld); - xi = t; t.add (xmodf, fld); t = t.gcd (*this, fld); - if (t.degree() > 0) //gcd(f,x^2^i - x mod f) is polynomial + if (t.degree() > 0) //gcd(f,x^2^i - x mod f) != const return false; } return true; @@ -124,7 +133,7 @@ void polynomial::generate_random_irreducible (uint s, gf2m&fld, prng& rng) { resize (s + 1); item (s) = 1; //degree s - item (0) = 1 + rng.random (fld.n - 1); //not divisible by x^1 + item (0) = 1 + rng.random (fld.n - 1); for (uint i = 1; i < s; ++i) item (i) = rng.random (fld.n); while (!is_irreducible (fld) ) { uint pos = rng.random (s); @@ -216,32 +225,26 @@ void polynomial::compute_goppa_check_matrix (matrix&r, gf2m&fld) { if (degree() < 0) return; //wrongly initialized polynomial uint t = degree(); - vector > yz, h; - uint i, j, k; - yz.resize (t); - h.resize (t); - for (i = 0; i < t; ++i) { - yz[i].resize (fld.n); - h[i].resize (fld.n, 0); + vector > h; + uint i, j; + + //construction from Sendrier's slides with maximal support L=[0..fld.n) + h.resize (fld.n); + for (i = 0; i < fld.n; ++i) { + h[i].resize (t); + h[i][0] = fld.inv (eval (i, fld) ); + if(h[i][0]==0) std::cout << "BLE" << std::endl; } - //create Y*Z - for (i = 0; i < fld.n; ++i) yz[0][i] = fld.inv (eval (i, fld) ); - for (i = 1; i < t; ++i) for (j = 0; j < fld.n; ++j) - yz[i][j] = fld.mult (yz[i-1][j], j); - //X*Y*Z = h - for (i = 0; i < t; ++i) - for (j = 0; j < fld.n; ++j) - for (k = 0; k <= i; ++k) - h[i][j] = fld.add (h[i][j], fld.mult - (yz[k][j], - item (t + k - i) ) ); + //compute support powers + for (j = 0; j < fld.n; ++j) for (i = 1; i < t; ++i) + h[j][i] = fld.mult (h[j][i-1], j); //now convert to binary r.resize (fld.n); for (i = 0; i < fld.n; ++i) { - r[i].resize (fld.m * t, 0); + r[i].resize (fld.m * t); for (j = 0; j < fld.m * t; ++j) - r[i][j] = (h[j/fld.m][i] >> (j % fld.m) ) & 1; + r[i][j] = (h[i][j/fld.m] >> (j % fld.m) ) & 1; } } @@ -278,7 +281,6 @@ void polynomial::div (polynomial&p, polynomial&m, gf2m&fld) polynomial r0, r1, s0, s1, s2, q1, q2; r0 = m; - r1 = p; r1.mod (m, fld);