mce_qd: decoding work, along with some fixes
- vector functions - decoding function simplification
This commit is contained in:
parent
5b69b38e09
commit
9620632e84
|
@ -43,17 +43,18 @@ public:
|
||||||
void add (const bvector&);
|
void add (const bvector&);
|
||||||
void add_range (const bvector&, uint, uint);
|
void add_range (const bvector&, uint, uint);
|
||||||
void add_offset (const bvector&, uint);
|
void add_offset (const bvector&, uint);
|
||||||
|
void get_block (uint, uint, bvector&) const;
|
||||||
bool operator* (const bvector&); //dot product
|
bool operator* (const bvector&); //dot product
|
||||||
bool zero() const;
|
bool zero() const;
|
||||||
|
|
||||||
void to_poly (polynomial&, gf2m&);
|
void to_poly (polynomial&, gf2m&) const;
|
||||||
void from_poly (const polynomial&, gf2m&);
|
void from_poly (const polynomial&, gf2m&);
|
||||||
|
|
||||||
void to_poly_cotrace (polynomial&, gf2m&);
|
void to_poly_cotrace (polynomial&, gf2m&) const;
|
||||||
void from_poly_cotrace (const polynomial&, gf2m&);
|
void from_poly_cotrace (const polynomial&, gf2m&);
|
||||||
|
|
||||||
void colex_rank (bvector&);
|
void colex_rank (bvector&) const;
|
||||||
void colex_unrank (bvector&, uint n, uint k);
|
void colex_unrank (bvector&, uint n, uint k) const;
|
||||||
};
|
};
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -380,6 +381,7 @@ public:
|
||||||
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
|
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
|
||||||
uint T; //the QD's t parameter is 2^T.
|
uint T; //the QD's t parameter is 2^T.
|
||||||
permutation block_perm; //order of blocks
|
permutation block_perm; //order of blocks
|
||||||
|
//TODO this is derivable from hperm.
|
||||||
uint block_count; //blocks >= block_count are shortened-out
|
uint block_count; //blocks >= block_count are shortened-out
|
||||||
permutation hperm; //block permutation of H block used to get G
|
permutation hperm; //block permutation of H block used to get G
|
||||||
std::vector<uint> block_perms; //dyadic permutations of blocks
|
std::vector<uint> block_perms; //dyadic permutations of blocks
|
||||||
|
@ -390,6 +392,8 @@ public:
|
||||||
polynomial g; //computed goppa polynomial
|
polynomial g; //computed goppa polynomial
|
||||||
std::vector<polynomial> sqInv;
|
std::vector<polynomial> sqInv;
|
||||||
|
|
||||||
|
std::vector<bvector> Hc; //signature lines of pre-permuted check matrix
|
||||||
|
std::vector<uint> support_pos; //pre-permuted positions of support rows
|
||||||
|
|
||||||
int decrypt (const bvector&, bvector&);
|
int decrypt (const bvector&, bvector&);
|
||||||
int prepare();
|
int prepare();
|
||||||
|
@ -427,9 +431,9 @@ int generate (pubkey&, privkey&, prng&, uint m, uint T, uint b);
|
||||||
* Similar to Hamdi's Chained BCH Codes, but with improvement.
|
* Similar to Hamdi's Chained BCH Codes, but with improvement.
|
||||||
*
|
*
|
||||||
* This is experimental, unverified, probably insecure, but practical scheme
|
* This is experimental, unverified, probably insecure, but practical scheme
|
||||||
* that achieves good speed, probability and key size for full decoding that is
|
* that achieves good speed, probability and non-exponential key size for full
|
||||||
* needed to produce signatures. Technique is described in documentation, with
|
* decoding that is needed to produce signatures. Technique is described in
|
||||||
* some (probably sufficient) notes in source code.
|
* documentation, with some (probably sufficient) notes in source code.
|
||||||
*
|
*
|
||||||
* Note that encryption using this scheme is impossible, as there is only an
|
* Note that encryption using this scheme is impossible, as there is only an
|
||||||
* extremely tiny probability of successful decoding.
|
* extremely tiny probability of successful decoding.
|
||||||
|
|
|
@ -30,6 +30,13 @@ void bvector::add_offset (const bvector&a, uint offset)
|
||||||
item (offset + i) = item (offset + i) ^ a[i];
|
item (offset + i) = item (offset + i) ^ a[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void bvector::get_block (uint offset, uint bs, bvector&out) const
|
||||||
|
{
|
||||||
|
if (offset + bs > size() ) return;
|
||||||
|
out.resize (bs);
|
||||||
|
for (uint i = 0; i < bs; ++i) out[i] = item (offset + i);
|
||||||
|
}
|
||||||
|
|
||||||
bool bvector::operator* (const bvector&a)
|
bool bvector::operator* (const bvector&a)
|
||||||
{
|
{
|
||||||
bool r = 0;
|
bool r = 0;
|
||||||
|
@ -45,13 +52,13 @@ bool bvector::zero() const
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void bvector::to_poly (polynomial&r, gf2m&fld)
|
void bvector::to_poly (polynomial&r, gf2m&fld) const
|
||||||
{
|
{
|
||||||
r.clear();
|
r.clear();
|
||||||
if (size() % fld.m) return; //impossible
|
if (size() % fld.m) return; //impossible
|
||||||
r.resize (size() / fld.m, 0);
|
r.resize (size() / fld.m, 0);
|
||||||
for (uint i = 0; i < size(); ++i)
|
for (uint i = 0; i < size(); ++i)
|
||||||
if (item (i) ) r[i/fld.m] |= (1 << (i % fld.m) );
|
if (item (i) ) r[i / fld.m] |= (1 << (i % fld.m) );
|
||||||
}
|
}
|
||||||
|
|
||||||
void bvector::from_poly (const polynomial&r, gf2m&fld)
|
void bvector::from_poly (const polynomial&r, gf2m&fld)
|
||||||
|
@ -59,17 +66,17 @@ void bvector::from_poly (const polynomial&r, gf2m&fld)
|
||||||
clear();
|
clear();
|
||||||
resize (r.size() *fld.m, 0);
|
resize (r.size() *fld.m, 0);
|
||||||
for (uint i = 0; i < size(); ++i)
|
for (uint i = 0; i < size(); ++i)
|
||||||
item (i) = (r[i/fld.m] >> (i % fld.m) ) & 1;
|
item (i) = (r[i / fld.m] >> (i % fld.m) ) & 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
void bvector::to_poly_cotrace (polynomial&r, gf2m&fld)
|
void bvector::to_poly_cotrace (polynomial&r, gf2m&fld) const
|
||||||
{
|
{
|
||||||
r.clear();
|
r.clear();
|
||||||
if (size() % fld.m) return; //impossible
|
if (size() % fld.m) return; //impossible
|
||||||
uint s = size() / fld.m;
|
uint s = size() / fld.m;
|
||||||
r.resize (s, 0);
|
r.resize (s, 0);
|
||||||
for (uint i = 0; i < size(); ++i)
|
for (uint i = 0; i < size(); ++i)
|
||||||
if (item (i) ) r[i%s] |= (1 << (i / s) );
|
if (item (i) ) r[i % s] |= (1 << (i / s) );
|
||||||
}
|
}
|
||||||
|
|
||||||
void bvector::from_poly_cotrace (const polynomial&r, gf2m&fld)
|
void bvector::from_poly_cotrace (const polynomial&r, gf2m&fld)
|
||||||
|
@ -78,7 +85,7 @@ void bvector::from_poly_cotrace (const polynomial&r, gf2m&fld)
|
||||||
uint s = r.size();
|
uint s = r.size();
|
||||||
resize (s * fld.m, 0);
|
resize (s * fld.m, 0);
|
||||||
for (uint i = 0; i < size(); ++i)
|
for (uint i = 0; i < size(); ++i)
|
||||||
item (i) = (r[i%s] >> (i / s) ) & 1;
|
item (i) = (r[i % s] >> (i / s) ) & 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -117,7 +124,7 @@ static void combination_number (uint n, uint k, mpz_t& r)
|
||||||
mpz_clear (t);
|
mpz_clear (t);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void bvector_to_mpz (bvector&v, mpz_t&r)
|
static void bvector_to_mpz (const bvector&v, mpz_t&r)
|
||||||
{
|
{
|
||||||
mpz_set_ui (r, 0);
|
mpz_set_ui (r, 0);
|
||||||
mpz_realloc2 (r, v.size() );
|
mpz_realloc2 (r, v.size() );
|
||||||
|
@ -134,7 +141,7 @@ static void mpz_to_bvector (mpz_t&x, bvector&r)
|
||||||
r[i] = mpz_tstbit (x, i);
|
r[i] = mpz_tstbit (x, i);
|
||||||
}
|
}
|
||||||
|
|
||||||
void bvector::colex_rank (bvector&r)
|
void bvector::colex_rank (bvector&r) const
|
||||||
{
|
{
|
||||||
mpz_t res, t, t2;
|
mpz_t res, t, t2;
|
||||||
mpz_init_set_ui (res, 0);
|
mpz_init_set_ui (res, 0);
|
||||||
|
@ -158,8 +165,7 @@ void bvector::colex_rank (bvector&r)
|
||||||
mpz_clear (res);
|
mpz_clear (res);
|
||||||
}
|
}
|
||||||
|
|
||||||
#include <stdio.h>
|
void bvector::colex_unrank (bvector&res, uint n, uint k) const
|
||||||
void bvector::colex_unrank (bvector&res, uint n, uint k)
|
|
||||||
{
|
{
|
||||||
mpz_t r, t, t2;
|
mpz_t r, t, t2;
|
||||||
mpz_init (r);
|
mpz_init (r);
|
||||||
|
@ -185,7 +191,7 @@ void bvector::colex_unrank (bvector&res, uint n, uint k)
|
||||||
mpz_swap (t2, r);
|
mpz_swap (t2, r);
|
||||||
mpz_sub (r, t2, t);
|
mpz_sub (r, t2, t);
|
||||||
if (p > n) continue; //overflow protection
|
if (p > n) continue; //overflow protection
|
||||||
res[p-1] = 1;
|
res[p - 1] = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
mpz_clear (r);
|
mpz_clear (r);
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
|
|
||||||
#include "decoding.h"
|
#include "decoding.h"
|
||||||
|
|
||||||
void compute_error_locator (bvector&syndrome, gf2m&fld, polynomial& goppa,
|
void compute_error_locator (polynomial&syndrome, gf2m&fld, polynomial& goppa,
|
||||||
std::vector<polynomial>& sqInv, polynomial&out)
|
std::vector<polynomial>& sqInv, polynomial&out)
|
||||||
{
|
{
|
||||||
if (syndrome.zero() ) {
|
if (syndrome.zero() ) {
|
||||||
|
@ -11,9 +11,7 @@ void compute_error_locator (bvector&syndrome, gf2m&fld, polynomial& goppa,
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
polynomial v;
|
polynomial v = syndrome;
|
||||||
syndrome.to_poly (v, fld);
|
|
||||||
|
|
||||||
v.inv (goppa, fld); // v=Synd^-1 mod goppa
|
v.inv (goppa, fld); // v=Synd^-1 mod goppa
|
||||||
|
|
||||||
if (v.size() < 2) v.resize (2, 0);
|
if (v.size() < 2) v.resize (2, 0);
|
||||||
|
@ -90,7 +88,7 @@ bool evaluate_error_locator_trace (polynomial&sigma, bvector&ev, gf2m&fld)
|
||||||
trace[0] = trace_aux[0]; //trace[0] = x
|
trace[0] = trace_aux[0]; //trace[0] = x
|
||||||
|
|
||||||
for (uint i = 1; i < fld.m; ++i) {
|
for (uint i = 1; i < fld.m; ++i) {
|
||||||
trace_aux[i] = trace_aux[i-1];
|
trace_aux[i] = trace_aux[i - 1];
|
||||||
trace_aux[i].square (fld);
|
trace_aux[i].square (fld);
|
||||||
trace_aux[i].mod (sigma, fld);
|
trace_aux[i].mod (sigma, fld);
|
||||||
trace[0].add (trace_aux[i], fld);
|
trace[0].add (trace_aux[i], fld);
|
||||||
|
|
|
@ -6,7 +6,7 @@
|
||||||
|
|
||||||
using namespace ccr;
|
using namespace ccr;
|
||||||
|
|
||||||
void compute_error_locator (bvector&syndrome,
|
void compute_error_locator (polynomial&syndrome,
|
||||||
gf2m&fld,
|
gf2m&fld,
|
||||||
polynomial&goppa,
|
polynomial&goppa,
|
||||||
std::vector<polynomial>& sqInv,
|
std::vector<polynomial>& sqInv,
|
||||||
|
|
|
@ -21,9 +21,9 @@ static void fwht (vector<int> x, vector<int>&r)
|
||||||
x.swap (r);
|
x.swap (r);
|
||||||
for (uint i = 0; i < s; ++i) {
|
for (uint i = 0; i < s; ++i) {
|
||||||
if ( (i / bs) & 1)
|
if ( (i / bs) & 1)
|
||||||
r[i] = x[i-bs] - x[i];
|
r[i] = x[i - bs] - x[i];
|
||||||
else
|
else
|
||||||
r[i] = x[i] + x[i+bs];
|
r[i] = x[i] + x[i + bs];
|
||||||
}
|
}
|
||||||
bs >>= 1;
|
bs >>= 1;
|
||||||
}
|
}
|
||||||
|
|
|
@ -102,7 +102,7 @@ bool gf2m::create (uint M)
|
||||||
log.resize (n, 0);
|
log.resize (n, 0);
|
||||||
antilog.resize (n, 0);
|
antilog.resize (n, 0);
|
||||||
log[0] = n - 1;
|
log[0] = n - 1;
|
||||||
antilog[n-1] = 0;
|
antilog[n - 1] = 0;
|
||||||
|
|
||||||
uint i, xi = 1; //x^0
|
uint i, xi = 1; //x^0
|
||||||
for (i = 0; i < n - 1; ++i) {
|
for (i = 0; i < n - 1; ++i) {
|
||||||
|
@ -165,7 +165,7 @@ uint gf2m::exp (int k)
|
||||||
uint gf2m::inv (uint a)
|
uint gf2m::inv (uint a)
|
||||||
{
|
{
|
||||||
if (!a) return 0;
|
if (!a) return 0;
|
||||||
return antilog[ (n-1-log[a]) % (n - 1) ];
|
return antilog[ (n - 1 - log[a]) % (n - 1) ];
|
||||||
}
|
}
|
||||||
|
|
||||||
uint gf2m::sq_root (uint a)
|
uint gf2m::sq_root (uint a)
|
||||||
|
|
|
@ -98,13 +98,13 @@ bool matrix::compute_inversion (matrix&res, bool upper_tri, bool lower_tri)
|
||||||
if (upper_tri) {
|
if (upper_tri) {
|
||||||
for (i = s; i > 0; --i)
|
for (i = s; i > 0; --i)
|
||||||
for (j = i - 1; j > 0; --j)
|
for (j = i - 1; j > 0; --j)
|
||||||
if (m[j-1][i-1])
|
if (m[j - 1][i - 1])
|
||||||
r[j-1].add_range (r[i-1], i - 1, s);
|
r[j - 1].add_range (r[i - 1], i - 1, s);
|
||||||
} else {
|
} else {
|
||||||
for (i = s; i > 0; --i)
|
for (i = s; i > 0; --i)
|
||||||
for (j = i - 1; j > 0; --j)
|
for (j = i - 1; j > 0; --j)
|
||||||
if (m[j-1][i-1])
|
if (m[j - 1][i - 1])
|
||||||
r[j-1].add (r[i-1]);
|
r[j - 1].add (r[i - 1]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -214,7 +214,7 @@ void matrix::extend_left_compact (matrix&r)
|
||||||
r[i][i] = 1;
|
r[i][i] = 1;
|
||||||
}
|
}
|
||||||
for (i = 0; i < w; ++i) {
|
for (i = 0; i < w; ++i) {
|
||||||
r[h+i] = item (i);
|
r[h + i] = item (i);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -233,6 +233,7 @@ bool matrix::create_goppa_generator (matrix&g, const permutation&p)
|
||||||
t.get_right_square (sinv);
|
t.get_right_square (sinv);
|
||||||
if (!sinv.compute_inversion (s) ) return false; //meant to be retried.
|
if (!sinv.compute_inversion (s) ) return false; //meant to be retried.
|
||||||
|
|
||||||
|
//TODO why multiply and THEN strip?
|
||||||
s.mult (t);
|
s.mult (t);
|
||||||
s.strip_right_square (t); //matrix pingpong for the result
|
s.strip_right_square (t); //matrix pingpong for the result
|
||||||
t.compute_transpose (s);
|
t.compute_transpose (s);
|
||||||
|
|
10
lib/mce.cpp
10
lib/mce.cpp
|
@ -78,8 +78,9 @@ int privkey::decrypt (const bvector&in, bvector&out)
|
||||||
h.mult_vec_right (canonical, syndrome);
|
h.mult_vec_right (canonical, syndrome);
|
||||||
|
|
||||||
//decode
|
//decode
|
||||||
polynomial loc;
|
polynomial synd, loc;
|
||||||
compute_error_locator (syndrome, fld, g, sqInv, loc);
|
syndrome.to_poly (synd, fld);
|
||||||
|
compute_error_locator (synd, fld, g, sqInv, loc);
|
||||||
|
|
||||||
bvector ev;
|
bvector ev;
|
||||||
if (!evaluate_error_locator_trace (loc, ev, fld) )
|
if (!evaluate_error_locator_trace (loc, ev, fld) )
|
||||||
|
@ -113,7 +114,7 @@ int privkey::sign (const bvector&in, bvector&out, uint delta, uint attempts, prn
|
||||||
bvector p, e, synd, synd_orig, e2;
|
bvector p, e, synd, synd_orig, e2;
|
||||||
std::vector<uint> epos;
|
std::vector<uint> epos;
|
||||||
permutation hpermInv;
|
permutation hpermInv;
|
||||||
polynomial loc;
|
polynomial loc, Synd;
|
||||||
|
|
||||||
s = hash_size();
|
s = hash_size();
|
||||||
|
|
||||||
|
@ -142,7 +143,8 @@ int privkey::sign (const bvector&in, bvector&out, uint delta, uint attempts, prn
|
||||||
e[epos[i]] = 1;
|
e[epos[i]] = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
compute_error_locator (synd, fld, g, sqInv, loc);
|
synd.to_poly (Synd, fld);
|
||||||
|
compute_error_locator (Synd, fld, g, sqInv, loc);
|
||||||
|
|
||||||
if (evaluate_error_locator_trace (loc, e2, fld) ) {
|
if (evaluate_error_locator_trace (loc, e2, fld) ) {
|
||||||
|
|
||||||
|
|
|
@ -74,7 +74,7 @@ int privkey::sign (const bvector&in, bvector&out,
|
||||||
bvector e, e2, synd, synd_orig, cw, cwc, plain, overlap;
|
bvector e, e2, synd, synd_orig, cw, cwc, plain, overlap;
|
||||||
std::vector<uint> epos;
|
std::vector<uint> epos;
|
||||||
permutation hpermInv;
|
permutation hpermInv;
|
||||||
polynomial loc;
|
polynomial loc, Synd;
|
||||||
uint i, t;
|
uint i, t;
|
||||||
|
|
||||||
uint mt = fld.m * codes[0].g.degree(),
|
uint mt = fld.m * codes[0].g.degree(),
|
||||||
|
@ -123,7 +123,8 @@ int privkey::sign (const bvector&in, bvector&out,
|
||||||
e[epos[i]] = 1;
|
e[epos[i]] = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
compute_error_locator (synd, fld,
|
synd.to_poly (Synd, fld);
|
||||||
|
compute_error_locator (Synd, fld,
|
||||||
codes[ci].g,
|
codes[ci].g,
|
||||||
codes[ci].sqInv, loc);
|
codes[ci].sqInv, loc);
|
||||||
|
|
||||||
|
|
145
lib/mce_qd.cpp
145
lib/mce_qd.cpp
|
@ -5,6 +5,7 @@ using namespace ccr;
|
||||||
using namespace ccr::mce_qd;
|
using namespace ccr::mce_qd;
|
||||||
|
|
||||||
#include "decoding.h"
|
#include "decoding.h"
|
||||||
|
#include "fwht.h"
|
||||||
|
|
||||||
#include <set>
|
#include <set>
|
||||||
|
|
||||||
|
@ -37,6 +38,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||||
priv.T = T;
|
priv.T = T;
|
||||||
uint t = 1 << T;
|
uint t = 1 << T;
|
||||||
|
|
||||||
|
std::cout << "generate" << std::endl;
|
||||||
//convenience
|
//convenience
|
||||||
gf2m&fld = priv.fld;
|
gf2m&fld = priv.fld;
|
||||||
std::vector<uint>&Hsig = priv.Hsig;
|
std::vector<uint>&Hsig = priv.Hsig;
|
||||||
|
@ -56,37 +58,39 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||||
std::set<uint> used;
|
std::set<uint> used;
|
||||||
used.clear();
|
used.clear();
|
||||||
|
|
||||||
|
std::cout << "attempt..." << std::endl;
|
||||||
//first off, compute the H signature
|
//first off, compute the H signature
|
||||||
|
|
||||||
Hsig[0] = choose_random (fld.n, rng, used);
|
Hsig[0] = choose_random (fld.n, rng, used);
|
||||||
essence[m-1] = fld.inv (Hsig[0]);
|
essence[m - 1] = fld.inv (Hsig[0]);
|
||||||
//essence[m-1] is now used as precomputed 1/h_0
|
//essence[m-1] is now used as precomputed 1/h_0
|
||||||
|
|
||||||
for (uint s = 0; s < m - 1; ++s) {
|
for (uint s = 0; s < m - 1; ++s) {
|
||||||
uint i = 1 << s; //i = 2^s
|
uint i = 1 << s; //i = 2^s
|
||||||
|
|
||||||
Hsig[i] = choose_random (fld.n, rng, used);
|
Hsig[i] = choose_random (fld.n, rng, used);
|
||||||
essence[s] = fld.add (essence[m-1], fld.inv (Hsig[i]) );
|
essence[s] = fld.add (essence[m - 1], fld.inv (Hsig[i]) );
|
||||||
used.insert (fld.inv (essence[s]) );
|
used.insert (fld.inv (essence[s]) );
|
||||||
|
|
||||||
for (uint j = 1; j < i; ++j) {
|
for (uint j = 1; j < i; ++j) {
|
||||||
Hsig[i+j] = fld.inv
|
Hsig[i + j] = fld.inv
|
||||||
(fld.add
|
(fld.add
|
||||||
(fld.inv (Hsig[i]),
|
(fld.inv (Hsig[i]),
|
||||||
fld.add (
|
fld.add (
|
||||||
fld.inv (Hsig[j]),
|
fld.inv (Hsig[j]),
|
||||||
essence[m-1]
|
essence[m - 1]
|
||||||
) ) );
|
) ) );
|
||||||
used.insert (Hsig[i+j]);
|
used.insert (Hsig[i + j]);
|
||||||
used.insert (fld.inv
|
used.insert (fld.inv
|
||||||
(fld.add
|
(fld.add
|
||||||
(fld.inv (Hsig[i+j]),
|
(fld.inv (Hsig[i + j]),
|
||||||
essence[m-1]) ) );
|
essence[m - 1]) ) );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//from now on, we fix 'omega' from the paper to zero.
|
//from now on, we fix 'omega' from the paper to zero.
|
||||||
|
|
||||||
|
std::cout << "goppa..." << std::endl;
|
||||||
//assemble goppa polynomial.
|
//assemble goppa polynomial.
|
||||||
g.clear();
|
g.clear();
|
||||||
g.resize (1, 1); //g(x)=1 so we can multiply it
|
g.resize (1, 1); //g(x)=1 so we can multiply it
|
||||||
|
@ -96,15 +100,19 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||||
//tmp(x)=x-z=x-(1/h_i)
|
//tmp(x)=x-z=x-(1/h_i)
|
||||||
tmp[0] = fld.inv (Hsig[i]);
|
tmp[0] = fld.inv (Hsig[i]);
|
||||||
g.mult (tmp, fld);
|
g.mult (tmp, fld);
|
||||||
|
std::cout << "computing g... " << g;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::cout << "Goppa poly " << g;
|
||||||
|
|
||||||
|
std::cout << "support..." << std::endl;
|
||||||
//compute the support, retry if it has two equal elements.
|
//compute the support, retry if it has two equal elements.
|
||||||
used.clear();
|
used.clear();
|
||||||
bool consistent = true;
|
bool consistent = true;
|
||||||
for (uint i = 0; i < fld.n / 2; ++i) {
|
for (uint i = 0; i < fld.n / 2; ++i) {
|
||||||
support[i] = fld.add (
|
support[i] = fld.add (
|
||||||
fld.inv (Hsig[i]),
|
fld.inv (Hsig[i]),
|
||||||
essence[m-1]);
|
essence[m - 1]);
|
||||||
|
|
||||||
if (used.count (support[i]) ) {
|
if (used.count (support[i]) ) {
|
||||||
consistent = false;
|
consistent = false;
|
||||||
|
@ -112,15 +120,18 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||||
}
|
}
|
||||||
|
|
||||||
if (g.eval (support[i], fld) == 0) {
|
if (g.eval (support[i], fld) == 0) {
|
||||||
|
std::cout << "support zero!" << std::endl;
|
||||||
consistent = false;
|
consistent = false;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::cout << "support at " << i << ": " << support[i] << std::endl;
|
||||||
|
|
||||||
used.insert (support[i]);
|
used.insert (support[i]);
|
||||||
}
|
}
|
||||||
if (!consistent) continue; //retry
|
if (!consistent) continue; //retry
|
||||||
|
|
||||||
|
std::cout << "blocks..." << std::endl;
|
||||||
//now the blocks.
|
//now the blocks.
|
||||||
uint block_size = 1 << T,
|
uint block_size = 1 << T,
|
||||||
h_block_count = (fld.n / 2) / block_size;
|
h_block_count = (fld.n / 2) / block_size;
|
||||||
|
@ -135,13 +146,16 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||||
(Hsig.begin() + i * block_size,
|
(Hsig.begin() + i * block_size,
|
||||||
Hsig.begin() + (i + 1) * block_size);
|
Hsig.begin() + (i + 1) * block_size);
|
||||||
|
|
||||||
|
std::cout << "permuting blocks..." << std::endl;
|
||||||
//permute them
|
//permute them
|
||||||
priv.block_perm.generate_random (h_block_count, rng);
|
priv.block_perm.generate_random (h_block_count, rng);
|
||||||
priv.block_perm.permute (bl, blp);
|
priv.block_perm.permute (bl, blp);
|
||||||
|
|
||||||
|
std::cout << "discarding blocks..." << std::endl;
|
||||||
//discard blocks
|
//discard blocks
|
||||||
blp.resize (block_count);
|
blp.resize (block_count);
|
||||||
|
|
||||||
|
std::cout << "permuting dyadic blocks..." << std::endl;
|
||||||
//permute individual blocks
|
//permute individual blocks
|
||||||
priv.block_perms.resize (block_count);
|
priv.block_perms.resize (block_count);
|
||||||
bl.resize (blp.size() );
|
bl.resize (blp.size() );
|
||||||
|
@ -158,14 +172,17 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||||
|
|
||||||
matrix r, ri, l;
|
matrix r, ri, l;
|
||||||
|
|
||||||
for (;;) {
|
//try several permutations to construct G
|
||||||
|
uint attempts = 0;
|
||||||
|
for (attempts = 0; attempts < block_count; ++attempts) {
|
||||||
|
std::cout << "generating G..." << std::endl;
|
||||||
priv.hperm.generate_random (block_count, rng);
|
priv.hperm.generate_random (block_count, rng);
|
||||||
|
|
||||||
for (uint i = 0; i < block_count; ++i)
|
for (uint i = 0; i < block_count; ++i)
|
||||||
for (uint j = 0; j < block_size; ++j) {
|
for (uint j = 0; j < block_size; ++j) {
|
||||||
permutation::permute_dyadic
|
permutation::permute_dyadic
|
||||||
(j, bl[priv.hperm[i]], col);
|
(j, bl[priv.hperm[i]], col);
|
||||||
Hc[i*block_size + j].from_poly_cotrace
|
Hc[i * block_size + j].from_poly_cotrace
|
||||||
(col, fld);
|
(col, fld);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -177,22 +194,29 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||||
*/
|
*/
|
||||||
|
|
||||||
Hc.get_right_square (r);
|
Hc.get_right_square (r);
|
||||||
|
std::cout << "RIGHT SQUARE " << r;
|
||||||
if (!r.compute_inversion (ri) )
|
if (!r.compute_inversion (ri) )
|
||||||
continue; //retry with other hperm
|
continue; //retry with other code
|
||||||
|
std::cout << "Rinv " << ri;
|
||||||
Hc.strip_right_square (l);
|
Hc.strip_right_square (l);
|
||||||
ri.mult (l);
|
ri.mult (l);
|
||||||
|
std::cout << "l " << ri;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (attempts == block_count) //generating G failed, retry all
|
||||||
|
continue;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Redundancy-checking part of G is now (transposed) in ri.
|
* Redundancy-checking part of G is now (transposed) in ri.
|
||||||
* Get QD signatures by getting every t'th row (transposed).
|
* Get QD signatures by getting every t'th row (transposed).
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
std::cout << "pubkey..." << std::endl;
|
||||||
pub.T = T;
|
pub.T = T;
|
||||||
pub.qd_sigs.resize (ri.width() / t);
|
pub.qd_sigs.resize (ri.width() / t);
|
||||||
for (uint i = 0; i < ri.width(); i += t)
|
for (uint i = 0; i < ri.width(); i += t)
|
||||||
pub.qd_sigs[i/t] = ri[i];
|
pub.qd_sigs[i / t] = ri[i];
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
@ -200,23 +224,23 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||||
|
|
||||||
int privkey::prepare()
|
int privkey::prepare()
|
||||||
{
|
{
|
||||||
|
std::cout << "prepare" << std::endl;
|
||||||
//compute H signature from essence
|
//compute H signature from essence
|
||||||
Hsig.resize (fld.n / 2);
|
Hsig.resize (fld.n / 2);
|
||||||
Hsig[0] = fld.inv (essence[fld.m-1]);
|
Hsig[0] = fld.inv (essence[fld.m - 1]);
|
||||||
for (uint s = 0; s < fld.m - 1; ++s) {
|
for (uint s = 0; s < fld.m - 1; ++s) {
|
||||||
uint i = 1 << s; //i = 2^s
|
uint i = 1 << s; //i = 2^s
|
||||||
|
|
||||||
//TODO verify this
|
Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m - 1]) );
|
||||||
Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m-1]) );
|
|
||||||
|
|
||||||
for (uint j = 1; j < i; ++j)
|
for (uint j = 1; j < i; ++j)
|
||||||
Hsig[i+j] = fld.inv
|
Hsig[i + j] = fld.inv
|
||||||
(fld.add
|
(fld.add
|
||||||
(fld.inv (Hsig[i]),
|
(fld.inv (Hsig[i]),
|
||||||
fld.add (
|
fld.add (
|
||||||
fld.inv (Hsig[j]),
|
fld.inv (Hsig[j]),
|
||||||
essence[fld.m-1]
|
essence[fld.m - 1]
|
||||||
) ) );
|
) ) );
|
||||||
}
|
}
|
||||||
|
|
||||||
//compute the support
|
//compute the support
|
||||||
|
@ -224,10 +248,15 @@ int privkey::prepare()
|
||||||
for (uint i = 0; i < fld.n / 2; ++i) {
|
for (uint i = 0; i < fld.n / 2; ++i) {
|
||||||
support[i] = fld.add
|
support[i] = fld.add
|
||||||
(fld.inv (Hsig[i]),
|
(fld.inv (Hsig[i]),
|
||||||
essence[fld.m-1]);
|
essence[fld.m - 1]);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//TODO prepare permuted Hsig (that can be applied to the ciphertext)
|
||||||
|
|
||||||
|
//TODO prepare function that converts a support zero to ciphertext
|
||||||
|
//position
|
||||||
|
|
||||||
//goppa polynomial
|
//goppa polynomial
|
||||||
g.clear();
|
g.clear();
|
||||||
g.resize (1, 1);
|
g.resize (1, 1);
|
||||||
|
@ -245,12 +274,11 @@ int privkey::prepare()
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
#include "fwht.h"
|
|
||||||
|
|
||||||
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
||||||
{
|
{
|
||||||
uint t = 1 << T;
|
uint t = 1 << T;
|
||||||
bvector p, g, r, cksum;
|
bvector p, g, r, cksum;
|
||||||
|
uint i, j, k;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* shortened checksum pair of G is computed blockwise accordingly to
|
* shortened checksum pair of G is computed blockwise accordingly to
|
||||||
|
@ -268,17 +296,23 @@ int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
||||||
g.resize (t);
|
g.resize (t);
|
||||||
r.resize (t);
|
r.resize (t);
|
||||||
|
|
||||||
for (uint i = 0; i < qd_sigs.size(); ++i) {
|
for (i = 0; i < qd_sigs.size(); ++i) {
|
||||||
//plaintext block
|
std::cout << "Signature line " << i << ": " << qd_sigs[i];
|
||||||
for (uint k = 0; k < t; ++k) p[k] = in[k+i*t];
|
}
|
||||||
|
|
||||||
for (uint j = 0; j < blocks; ++j) {
|
for (i = 0; i < qd_sigs.size(); ++i) {
|
||||||
|
//plaintext block
|
||||||
|
in.get_block (i * t, t, p);
|
||||||
|
|
||||||
|
for (j = 0; j < blocks; ++j) {
|
||||||
//checksum block
|
//checksum block
|
||||||
for (uint k = 0; k < t; ++k) g[k] = qd_sigs[i][k+j*t];
|
qd_sigs[i].get_block (j * t, t, g);
|
||||||
|
|
||||||
//block result
|
//block result
|
||||||
fwht_dyadic_multiply (p, g, r);
|
fwht_dyadic_multiply (p, g, r);
|
||||||
|
//std::cout << "DYADIC MULTIPLY: " << p << g << r << "---" << std::endl;
|
||||||
cksum.add_offset (r, t * j);
|
cksum.add_offset (r, t * j);
|
||||||
|
//std::cout << "CKSUM NOW: " << cksum;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -296,6 +330,7 @@ int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
||||||
//compute ciphertext
|
//compute ciphertext
|
||||||
out = in;
|
out = in;
|
||||||
out.insert (out.end(), cksum.begin(), cksum.end() );
|
out.insert (out.end(), cksum.begin(), cksum.end() );
|
||||||
|
std::cout << "without errors: " << out;
|
||||||
out.add (e);
|
out.add (e);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
@ -303,7 +338,45 @@ int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
||||||
|
|
||||||
int privkey::decrypt (const bvector&in, bvector&out)
|
int privkey::decrypt (const bvector&in, bvector&out)
|
||||||
{
|
{
|
||||||
//TODO decoding
|
if (in.size() != cipher_size() ) return 2;
|
||||||
|
|
||||||
|
//multiply line-by-line block-by-block by H
|
||||||
|
uint block_size = 1 << T;
|
||||||
|
bvector synd_vec;
|
||||||
|
bvector hp, cp, res;
|
||||||
|
uint i, j, k;
|
||||||
|
|
||||||
|
synd_vec.resize (block_size * fld.m);
|
||||||
|
hp.resize (block_size);
|
||||||
|
cp.resize (block_size);
|
||||||
|
res.resize (block_size);
|
||||||
|
|
||||||
|
for (i = 0; i < block_count; ++i) {
|
||||||
|
in.get_block (i * block_size, block_size, cp);
|
||||||
|
for (j = 0; j < fld.m; ++j) {
|
||||||
|
Hc[j].get_block (i * block_size, block_size, hp);
|
||||||
|
fwht_dyadic_multiply (hp, cp, res);
|
||||||
|
synd_vec.add_offset (res, j * block_size);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//decoding
|
||||||
|
polynomial synd, loc;
|
||||||
|
synd_vec.to_poly_cotrace (synd, fld);
|
||||||
|
compute_error_locator (synd, fld, g, sqInv, loc);
|
||||||
|
|
||||||
|
bvector ev;
|
||||||
|
if (!evaluate_error_locator_trace (loc, ev, fld) )
|
||||||
|
return 1; //couldn't decode
|
||||||
|
//TODO evaluator should return error positions, not bvector. fix it everywhere!
|
||||||
|
|
||||||
|
out = in;
|
||||||
|
//flip error positions of out.
|
||||||
|
for (i = 0; i < ev.size(); ++i) if (ev[i]) {
|
||||||
|
if (support_pos[i] == -1) return 1; //couldn't decode TODO is it true?
|
||||||
|
out[i] = !out[i];
|
||||||
|
}
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
11
lib/nd.cpp
11
lib/nd.cpp
|
@ -57,8 +57,9 @@ int privkey::decrypt (const bvector&in, bvector&out)
|
||||||
bvector unsc; //unscrambled
|
bvector unsc; //unscrambled
|
||||||
Sinv.mult_vec_right (in, unsc);
|
Sinv.mult_vec_right (in, unsc);
|
||||||
|
|
||||||
polynomial loc;
|
polynomial loc, synd;
|
||||||
compute_error_locator (unsc, fld, g, sqInv, loc);
|
unsc.to_poly (synd, fld);
|
||||||
|
compute_error_locator (synd, fld, g, sqInv, loc);
|
||||||
|
|
||||||
bvector ev;
|
bvector ev;
|
||||||
if (!evaluate_error_locator_trace (loc, ev, fld) )
|
if (!evaluate_error_locator_trace (loc, ev, fld) )
|
||||||
|
@ -76,8 +77,7 @@ int privkey::sign (const bvector&in, bvector&out, uint delta, uint attempts, prn
|
||||||
uint i, s, t;
|
uint i, s, t;
|
||||||
|
|
||||||
bvector synd_unsc, synd, e;
|
bvector synd_unsc, synd, e;
|
||||||
|
polynomial loc, Synd;
|
||||||
polynomial loc;
|
|
||||||
|
|
||||||
s = hash_size();
|
s = hash_size();
|
||||||
if (in.size() != s) return 2;
|
if (in.size() != s) return 2;
|
||||||
|
@ -92,7 +92,8 @@ int privkey::sign (const bvector&in, bvector&out, uint delta, uint attempts, prn
|
||||||
|
|
||||||
Sinv.mult_vec_right (synd, synd_unsc);
|
Sinv.mult_vec_right (synd, synd_unsc);
|
||||||
|
|
||||||
compute_error_locator (synd_unsc, fld, g, sqInv, loc);
|
synd_unsc.to_poly (Synd, fld);
|
||||||
|
compute_error_locator (Synd, fld, g, sqInv, loc);
|
||||||
|
|
||||||
if (evaluate_error_locator_trace (loc, e, fld) ) {
|
if (evaluate_error_locator_trace (loc, e, fld) ) {
|
||||||
|
|
||||||
|
|
|
@ -58,8 +58,8 @@ void polynomial::mod (const polynomial&f, gf2m&fld)
|
||||||
|
|
||||||
for (int i = 0; i <= df; ++i)
|
for (int i = 0; i <= df; ++i)
|
||||||
item (i + d - df)
|
item (i + d - df)
|
||||||
= fld.add (item (i + d - df),
|
= fld.add (item (i + d - df),
|
||||||
fld.mult (t, f[i]) );
|
fld.mult (t, f[i]) );
|
||||||
}
|
}
|
||||||
strip();
|
strip();
|
||||||
}
|
}
|
||||||
|
@ -326,7 +326,7 @@ void polynomial::divmod (polynomial&d, polynomial&res, polynomial&rem, gf2m&fld)
|
||||||
if (res.size() < rp + 1) res.resize (rp + 1, 0);
|
if (res.size() < rp + 1) res.resize (rp + 1, 0);
|
||||||
res[rp] = fld.mult (headInv, rem[t]);
|
res[rp] = fld.mult (headInv, rem[t]);
|
||||||
for (uint i = 0; i <= degd; ++i)
|
for (uint i = 0; i <= degd; ++i)
|
||||||
rem[i+rp] = fld.add (rem[i+rp], fld.mult (res[rp], d[i]) );
|
rem[i + rp] = fld.add (rem[i + rp], fld.mult (res[rp], d[i]) );
|
||||||
}
|
}
|
||||||
rem.strip();
|
rem.strip();
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue