mce_qd: code generation
This commit is contained in:
parent
8162d6979c
commit
b04c1508ee
|
@ -49,6 +49,9 @@ public:
|
|||
void to_poly (polynomial&, gf2m&);
|
||||
void from_poly (const polynomial&, gf2m&);
|
||||
|
||||
void to_poly_cotrace (polynomial&, gf2m&);
|
||||
void from_poly_cotrace (const polynomial&, gf2m&);
|
||||
|
||||
void colex_rank (bvector&);
|
||||
void colex_unrank (bvector&, uint n, uint k);
|
||||
};
|
||||
|
@ -127,8 +130,12 @@ public:
|
|||
void compute_inversion (permutation&) const;
|
||||
|
||||
void generate_random (uint n, prng&);
|
||||
void permute (const bvector&, bvector&) const;
|
||||
void permute (const matrix&, matrix&) const;
|
||||
|
||||
template<class V> void permute (const V&a, V&r) const {
|
||||
r.resize (a.size() );
|
||||
for (uint i = 0; i < size(); ++i) r[item (i) ] = a[i];
|
||||
}
|
||||
|
||||
void permute_rows (const matrix&, matrix&) const;
|
||||
};
|
||||
|
||||
|
@ -324,13 +331,27 @@ int generate (pubkey&, privkey&, prng&, uint m, uint t);
|
|||
* according to Misoczki, Barreto, Compact McEliece Keys from Goppa Codes.
|
||||
*
|
||||
* Good security, extremely good speed with extremely reduced key size.
|
||||
* Recommended for encryption.
|
||||
* Recommended for encryption, but needs some plaintext conversion -- either
|
||||
* Fujisaki-Okamoto or Kobara-Imai are known to work good.
|
||||
*/
|
||||
namespace mce_qd
|
||||
{
|
||||
class privkey
|
||||
{
|
||||
public:
|
||||
std::vector<uint> essence;
|
||||
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
|
||||
uint T; //the QD's t parameter is 2^T.
|
||||
uint hperm; //dyadic permutation of H to G
|
||||
permutation block_perm; //order of blocks
|
||||
uint block_count; //blocks >= block_count are shortened-out
|
||||
std::vector<uint> block_perms; //dyadic permutations of blocks
|
||||
|
||||
//derivable stuff
|
||||
std::vector<uint> Hsig; //signature of canonical H matrix
|
||||
std::vector<uint> support; //computed goppa support
|
||||
polynomial g; //computed goppa polynomial
|
||||
|
||||
int decrypt (const bvector&, bvector&);
|
||||
int prepare();
|
||||
|
||||
|
@ -340,37 +361,25 @@ public:
|
|||
uint plain_size() {
|
||||
return 0; //TODO
|
||||
}
|
||||
uint hash_size() {
|
||||
return 0; //TODO
|
||||
}
|
||||
uint signature_size() {
|
||||
return 0; //TODO
|
||||
}
|
||||
};
|
||||
|
||||
class pubkey
|
||||
{
|
||||
public:
|
||||
matrix G;
|
||||
uint t;
|
||||
uint T;
|
||||
matrix M;
|
||||
|
||||
int encrypt (const bvector&, bvector&, prng&);
|
||||
|
||||
uint cipher_size() {
|
||||
return G.height();
|
||||
return 0; //TODO
|
||||
}
|
||||
uint plain_size() {
|
||||
return G.width();
|
||||
}
|
||||
uint hash_size() {
|
||||
return cipher_size();
|
||||
}
|
||||
uint signature_size() {
|
||||
return plain_size();
|
||||
return 0; //TODO
|
||||
}
|
||||
};
|
||||
|
||||
int generate (pubkey&, privkey&, prng&, uint m, uint t);
|
||||
int generate (pubkey&, privkey&, prng&, uint m, uint T, uint b);
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -62,6 +62,23 @@ void bvector::from_poly (const polynomial&r, gf2m&fld)
|
|||
item (i) = (r[i/fld.m] >> (i % fld.m) ) & 1;
|
||||
}
|
||||
|
||||
void bvector::to_poly_cotrace (polynomial&r, gf2m&fld)
|
||||
{
|
||||
r.clear();
|
||||
if (size() % fld.m) return; //impossible
|
||||
r.resize (size() / fld.m, 0);
|
||||
for (uint i = 0; i < size(); ++i)
|
||||
if (item (i) ) r[i%fld.m] |= (1 << (i / fld.m) );
|
||||
}
|
||||
|
||||
void bvector::from_poly_cotrace (const polynomial&r, gf2m&fld)
|
||||
{
|
||||
clear();
|
||||
resize (r.size() *fld.m, 0);
|
||||
for (uint i = 0; i < size(); ++i)
|
||||
item (i) = (r[i%fld.m] >> (i / fld.m) ) & 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* utility colex (un)ranking for niederreiter and workalikes.
|
||||
* see Ruskey's Combinatorial Generation, algorithm 4.10
|
||||
|
|
153
lib/mce_qd.cpp
153
lib/mce_qd.cpp
|
@ -6,28 +6,157 @@ using namespace ccr::mce_qd;
|
|||
|
||||
#include "decoding.h"
|
||||
|
||||
int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, uint m, uint t)
|
||||
#include <set>
|
||||
|
||||
static uint sample_from_u (gf2m&fld, prng&rng, std::set<uint>&used)
|
||||
{
|
||||
uint x;
|
||||
for (;;) {
|
||||
x = rng.random (fld.n);
|
||||
if (used.count (x) ) continue;
|
||||
used.insert (x);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
static uint choose_random (uint limit, prng&rng, std::set<uint>used)
|
||||
{
|
||||
if (used.size() >= limit - 1) return 0; //die
|
||||
for (;;) {
|
||||
uint a = 1 + rng.random (limit - 1);
|
||||
if (used.count (a) ) continue;
|
||||
used.insert (a);
|
||||
return a;
|
||||
}
|
||||
}
|
||||
|
||||
int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
||||
uint m, uint T, uint block_count)
|
||||
{
|
||||
priv.fld.create (m);
|
||||
priv.T = T;
|
||||
uint t = 1 << T;
|
||||
|
||||
//convenience
|
||||
gf2m&fld = priv.fld;
|
||||
std::vector<uint>&Hsig = priv.Hsig;
|
||||
std::vector<uint>&essence = priv.essence;
|
||||
std::vector<uint>&support = priv.support;
|
||||
polynomial&g = priv.g;
|
||||
|
||||
//prepare for data
|
||||
Hsig.resize (fld.n / 2);
|
||||
support.resize (fld.n / 2);
|
||||
essence.resize (m);
|
||||
//note that q=2^m, algo. n=q/2, log n = m-1
|
||||
|
||||
//retry generating until goppa code is produced.
|
||||
for (;;) {
|
||||
|
||||
std::set<uint> used;
|
||||
used.clear();
|
||||
|
||||
//first off, compute the H signature
|
||||
|
||||
Hsig[0] = choose_random (fld.n, rng, used);
|
||||
essence[m-1] = fld.inv (Hsig[0]);
|
||||
//essence[m-1] is now used as precomputed 1/h_0
|
||||
|
||||
for (uint s = 0; s < m - 1; ++s) {
|
||||
uint i = 1 << s; //i = 2^s
|
||||
|
||||
Hsig[i] = choose_random (fld.n, rng, used);
|
||||
essence[s] = fld.add (essence[m-1], fld.inv (Hsig[i]) );
|
||||
used.insert (fld.inv (essence[s]) );
|
||||
|
||||
for (uint j = 1; j < i; ++j) {
|
||||
Hsig[i+j] = fld.inv (
|
||||
fld.add (
|
||||
fld.inv (Hsig[i]),
|
||||
fld.add (
|
||||
fld.inv (Hsig[j]),
|
||||
essence[m-1]
|
||||
) ) );
|
||||
used.insert (Hsig[i+j]);
|
||||
used.insert (fld.inv (
|
||||
fld.add (
|
||||
fld.inv (Hsig[i+j]),
|
||||
essence[m-1]) ) );
|
||||
}
|
||||
}
|
||||
|
||||
//from now on, we fix 'omega' from the paper to zero.
|
||||
|
||||
//compute the support, retry if it has two equal elements.
|
||||
used.clear();
|
||||
bool consistent = true;
|
||||
for (uint i = 0; i < fld.n / 2; ++i) {
|
||||
support[i] = fld.add (
|
||||
fld.inv (Hsig[i]),
|
||||
essence[m-1]);
|
||||
|
||||
if (used.count (support[i]) ) {
|
||||
consistent = false;
|
||||
break;
|
||||
}
|
||||
used.insert (support[i]);
|
||||
}
|
||||
if (!consistent) continue; //retry
|
||||
|
||||
//assemble goppa polynomial.
|
||||
g.clear();
|
||||
g.resize (1, 1); //g(x)=1 so we can multiply it
|
||||
polynomial tmp;
|
||||
tmp.resize (2, 1); //tmp(x)=x-1
|
||||
for (uint i = 0; i < t; ++i) {
|
||||
//tmp(x)=x-z=x-(1/h_i)
|
||||
tmp[0] = fld.inv (Hsig[i]);
|
||||
g.mult (tmp, fld);
|
||||
}
|
||||
|
||||
//now the blocks.
|
||||
uint block_size = 1 << T,
|
||||
h_block_count = (fld.n / 2) / block_size;
|
||||
|
||||
//assemble blocks to bl
|
||||
std::vector<std::vector<uint> > bl, blp;
|
||||
bl.resize (block_size);
|
||||
for (uint i = 0; i < h_block_count; ++i)
|
||||
bl[i] = std::vector<uint>
|
||||
(Hsig.begin() + i * block_size,
|
||||
Hsig.begin() + (i + 1) * block_size);
|
||||
|
||||
//permute them
|
||||
permutation bp;
|
||||
bp.generate_random (h_block_count, rng);
|
||||
bp.permute (bl, blp);
|
||||
|
||||
//discard blocks
|
||||
blp.resize (block_count);
|
||||
|
||||
//TODO permute individual blocks
|
||||
|
||||
//TODO co-trace to binary H^
|
||||
//TODO systematic H
|
||||
//TODO systematic G
|
||||
//TODO signature of G
|
||||
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
int privkey::prepare()
|
||||
{
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
||||
{
|
||||
uint s = cipher_size();
|
||||
if (t > s) return 1;
|
||||
if (in.size() != plain_size() ) return 2;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int privkey::decrypt (const bvector&in, bvector&out)
|
||||
{
|
||||
if (in.size() != cipher_size() ) return 2;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int privkey::prepare ()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -27,18 +27,6 @@ void permutation::generate_random (uint size, prng&rng)
|
|||
}
|
||||
}
|
||||
|
||||
void permutation::permute (const bvector&a, bvector&r) const
|
||||
{
|
||||
r.resize (a.size() );
|
||||
for (uint i = 0; i < size(); ++i) r[item (i) ] = a[i];
|
||||
}
|
||||
|
||||
void permutation::permute (const matrix&a, matrix&r) const
|
||||
{
|
||||
r.resize (a.size() );
|
||||
for (uint i = 0; i < size(); ++i) r[item (i) ] = a[i];
|
||||
}
|
||||
|
||||
void permutation::permute_rows (const matrix&a, matrix&r) const
|
||||
{
|
||||
r.resize (a.size() );
|
||||
|
|
Loading…
Reference in a new issue