polynomial fixes
This commit is contained in:
parent
e4c75fe0e0
commit
b4381c473e
|
@ -39,6 +39,10 @@ void polynomial::add_mult (const polynomial&f, uint mult, gf2m&fld)
|
|||
void polynomial::mod (const polynomial&f, gf2m&fld)
|
||||
{
|
||||
int df = f.degree();
|
||||
if (df < 0) { //mod 0 -> 0
|
||||
clear();
|
||||
return;
|
||||
}
|
||||
int d;
|
||||
uint hi = fld.inv (f[df]);
|
||||
// while there's place to substract, reduce by x^(d-df)-multiply of f
|
||||
|
@ -271,20 +275,36 @@ void polynomial::sqrt (vector<polynomial>& sqInv, gf2m&fld)
|
|||
|
||||
void polynomial::div (polynomial&p, polynomial&m, gf2m&fld)
|
||||
{
|
||||
int degp = p.degree();
|
||||
if (degp < 0) return;
|
||||
polynomial r0, r1, s0, s1, s2, q1, q2;
|
||||
|
||||
uint headInv = fld.inv (p[degp]);
|
||||
polynomial A = *this;
|
||||
A.mod (m, fld);
|
||||
clear();
|
||||
int da;
|
||||
while ( (da = A.degree() ) >= degp) {
|
||||
int rp = da - degp;
|
||||
if (size() < rp + 1) resize (rp + 1, 0);
|
||||
item (rp) = fld.mult (headInv, A[da]);
|
||||
for (uint i = 0; i <= degp; ++i)
|
||||
A[i+rp] = fld.add (A[i+rp], fld.mult (item (rp), p[i]) );
|
||||
r0 = m;
|
||||
|
||||
r1 = p;
|
||||
r1.mod (m, fld);
|
||||
|
||||
s0.clear();
|
||||
|
||||
s1 = *this;
|
||||
s1.mod (m, fld);
|
||||
|
||||
while (r1.degree() >= 0) {
|
||||
r0.divmod (r1, q1, q2, fld);
|
||||
r0.swap (r1);
|
||||
r1.swap (q2);
|
||||
|
||||
s2 = s0;
|
||||
q1.mult (s1, fld);
|
||||
q1.mod (m, fld);
|
||||
s2.add (q1, fld);
|
||||
|
||||
s0.swap (s1);
|
||||
s1.swap (s2);
|
||||
}
|
||||
|
||||
*this = s0;
|
||||
if (r0.degree() >= 0) {
|
||||
uint m = fld.inv (r0[r0.degree() ]);
|
||||
for (uint i = 0; i < size(); ++i) item (i) = fld.mult (item (i), m);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -320,7 +340,6 @@ void polynomial::mod_to_fracton (polynomial&a, polynomial&b, polynomial&m, gf2m&
|
|||
int deg = m.degree() / 2;
|
||||
polynomial a0, a1, b0, b1, t1, t2;
|
||||
a0 = m;
|
||||
a0.make_monic (fld);
|
||||
a1 = *this;
|
||||
a1.mod (m, fld);
|
||||
b0.resize (1, 0);
|
||||
|
|
Loading…
Reference in a new issue