gf2m arithmetic phase
This commit is contained in:
parent
ec5b6c36b1
commit
cd65834a92
|
@ -14,7 +14,13 @@
|
|||
namespace ccr
|
||||
{
|
||||
|
||||
/*
|
||||
* typedefs. uint and sint should be able to comfortably hold the field
|
||||
* elements of underlying calculations (esp. with polynomials. Switching to
|
||||
* 64bits is adviseable when computing with n=64K and larger.
|
||||
*/
|
||||
typedef unsigned int uint;
|
||||
typedef int sint;
|
||||
|
||||
/*
|
||||
* vector over GF(2). We rely on STL's vector<bool> == bit_vector
|
||||
|
@ -85,22 +91,42 @@ public:
|
|||
};
|
||||
|
||||
/*
|
||||
* polynomial over GF(2) is effectively a vector with a_n binary values
|
||||
* galois field of 2^m elements. Stored in an integer, for convenience.
|
||||
*/
|
||||
|
||||
class gf2m
|
||||
{
|
||||
public:
|
||||
uint poly;
|
||||
uint n, m;
|
||||
|
||||
bool create (uint m);
|
||||
|
||||
uint add (uint, uint);
|
||||
uint mult (uint, uint);
|
||||
uint exp (uint, int);
|
||||
uint inv (uint);
|
||||
};
|
||||
|
||||
/*
|
||||
* polynomial over GF(2^m) is effectively a vector with a_n binary values
|
||||
* with some added operations.
|
||||
*/
|
||||
class polynomial : public bvector
|
||||
class polynomial : public std::vector<uint>
|
||||
{
|
||||
protected:
|
||||
_ccr_declare_vector_item
|
||||
public:
|
||||
void strip();
|
||||
int degree() const;
|
||||
bool zero() const;
|
||||
void add (const polynomial&);
|
||||
void mod (const polynomial&);
|
||||
void mult (const polynomial&);
|
||||
polynomial gcd (polynomial);
|
||||
bool is_irreducible();
|
||||
void generate_random_irreducible (uint n, prng&);
|
||||
void compute_mod_squaring_matrix (matrix&);
|
||||
void add (const polynomial&, gf2m&);
|
||||
void mod (const polynomial&, gf2m&);
|
||||
void mult (const polynomial&, gf2m&);
|
||||
polynomial gcd (polynomial, gf2m&);
|
||||
bool is_irreducible (gf2m&);
|
||||
void generate_random_irreducible (uint s, gf2m&, prng&);
|
||||
void compute_square_root_matrix (std::vector<polynomial>&, gf2m&);
|
||||
};
|
||||
|
||||
/*
|
||||
|
|
118
lib/gf2m.cpp
Normal file
118
lib/gf2m.cpp
Normal file
|
@ -0,0 +1,118 @@
|
|||
|
||||
#include "codecrypt.h"
|
||||
|
||||
using namespace ccr;
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
/*
|
||||
* helpful stuff for arithmetic in GF(2^m) - polynomials over GF(2).
|
||||
*/
|
||||
|
||||
int gf2p_degree (uint p)
|
||||
{
|
||||
int r = -1;
|
||||
for (int i = 0; p; p >>= 1, ++i) r = i;
|
||||
return r;
|
||||
}
|
||||
|
||||
uint gf2p_mod (uint a, uint p)
|
||||
{
|
||||
if (!p) return 0;
|
||||
int t, degp = gf2p_degree (p);
|
||||
while ( (t = gf2p_degree (a) ) >= degp)
|
||||
a ^= p << (t - degp);
|
||||
return a;
|
||||
}
|
||||
|
||||
uint gf2p_gcd (uint a, uint b)
|
||||
{
|
||||
uint c;
|
||||
if (!a) return b;
|
||||
while (b) {
|
||||
c = gf2p_mod (a, b);
|
||||
a = b;
|
||||
b = c;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
uint gf2p_modmult (uint a, uint b, uint p)
|
||||
{
|
||||
a = gf2p_mod (a, p);
|
||||
b = gf2p_mod (b, p);
|
||||
uint r = 0;
|
||||
uint d = 1 << gf2p_degree (p);
|
||||
while (a) {
|
||||
if (a & 1) r ^= b;
|
||||
a >>= 1;
|
||||
b <<= 1;
|
||||
if (b <= d) b ^= p;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
bool is_irreducible_gf2_poly (uint p)
|
||||
{
|
||||
if (!p) return false;
|
||||
int d = gf2p_degree (p) / 2;
|
||||
uint test = 2; //x^1+0
|
||||
for (int i = 0; i < d; ++i) {
|
||||
test = gf2p_modmult (test, test, p);
|
||||
|
||||
if (gf2p_gcd (test ^ 2 /* test - x^1 */, p) != 1)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool gf2m::create (uint M)
|
||||
{
|
||||
if (M < 1) return false; //too small.
|
||||
m = M;
|
||||
n = 1 << m;
|
||||
if (!n) return false; //too big.
|
||||
for (uint t = 1 + (1 << m), e = 1 << (1 + m); t < e; t += 2)
|
||||
if (is_irreducible_gf2_poly (t) ) {
|
||||
poly = t;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
uint gfn_mult(uint a, uint b, uint n)
|
||||
{
|
||||
uint irp=0;
|
||||
while(n) { irp=(irp<<1)|1; n>>=1;}
|
||||
uint r=a*b;
|
||||
//TODO probably move this to own file
|
||||
}
|
||||
|
||||
uint gfn_inv (uint a, uint n);
|
||||
|
||||
uint gfn_exp (uint a, sint k, uint n)
|
||||
{
|
||||
if (!a) return 0;
|
||||
if (a == 1) return 1;
|
||||
if (k < 0) {
|
||||
a = gfn_inv (a, n);
|
||||
k = -k;
|
||||
}
|
||||
uint r = 1;
|
||||
while (k) {
|
||||
if (k & 1) r=gfn_mult(r,a,n);
|
||||
a=gfn_mult(a,a,n);
|
||||
k >>= 2;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
uint gfn_inv (uint a, uint n)
|
||||
{
|
||||
if (n == 2) return a;
|
||||
return gfn_exp (a, ( (sint) n) - 2, n);
|
||||
}
|
||||
|
||||
*/
|
|
@ -1,17 +1,16 @@
|
|||
|
||||
#if 0
|
||||
#include "codecrypt.h"
|
||||
|
||||
using namespace ccr;
|
||||
|
||||
#if 0
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
void dump (const polynomial&t)
|
||||
{
|
||||
for (uint i = 0; i < t.size(); ++i) cout << t[i];
|
||||
for (uint i = 0; i < t.size(); ++i) cout << t[i] << ' ';
|
||||
cout << endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
int polynomial::degree() const
|
||||
{
|
||||
|
@ -31,26 +30,37 @@ bool polynomial::zero() const
|
|||
return true;
|
||||
}
|
||||
|
||||
void polynomial::add (const polynomial&f)
|
||||
void polynomial::add (const polynomial&f, gf2m&fld)
|
||||
{
|
||||
int df = f.degree();
|
||||
if (df > degree() ) resize (df + 1);
|
||||
for (int i = 0; i <= df; ++i) item (i) = item (i) ^ f[i];
|
||||
}
|
||||
|
||||
void polynomial::mod (const polynomial&f)
|
||||
void polynomial::mod (const polynomial&f, gf2m&fld)
|
||||
{
|
||||
int df = f.degree();
|
||||
int d;
|
||||
uint hi = fld.inv (f[df]);
|
||||
cout << "mod by inv " << hi << endl;
|
||||
dump (*this);
|
||||
dump (f);
|
||||
// while there's place to substract, reduce by x^(d-df)-multiply of f
|
||||
while ( (d = degree() ) >= df) {
|
||||
for (int i = 0; i <= df; ++i)
|
||||
item (i + d - df) = item (i + d - df) ^ f[i];
|
||||
}
|
||||
for (d = degree(); d >= df; --d)
|
||||
if (item (d) ) {
|
||||
uint t = fld.mult (item (d), hi);
|
||||
cout << "mult " << t << endl;
|
||||
for (int i = 0; i <= df; ++i)
|
||||
item (i + d - df) = fld.add (item (i + d - df)
|
||||
, fld.mult (t, f[i]) );
|
||||
cout << "now ";
|
||||
dump (*this);
|
||||
}
|
||||
cout << "end mod" << endl;
|
||||
strip();
|
||||
}
|
||||
|
||||
void polynomial::mult (const polynomial&b)
|
||||
void polynomial::mult (const polynomial&b, gf2m&fld)
|
||||
{
|
||||
polynomial a = *this;
|
||||
clear();
|
||||
|
@ -60,10 +70,11 @@ void polynomial::mult (const polynomial&b)
|
|||
resize (da + db + 1, 0);
|
||||
for (i = 0; i <= da; ++i)
|
||||
if (a[i]) for (j = 0; j <= db; ++j)
|
||||
item (i + j) = item (i + j) ^ b[j];
|
||||
item (i + j) = fld.add (item (i + j),
|
||||
fld.mult (a[i], b[j]) );
|
||||
}
|
||||
|
||||
polynomial polynomial::gcd (polynomial b)
|
||||
polynomial polynomial::gcd (polynomial b, gf2m&fld)
|
||||
{
|
||||
polynomial a = *this;
|
||||
|
||||
|
@ -71,15 +82,17 @@ polynomial polynomial::gcd (polynomial b)
|
|||
if (a.degree() < 0) return b;
|
||||
for (;;) {
|
||||
if (b.zero() ) return a;
|
||||
a.mod (b);
|
||||
dump (a);
|
||||
a.mod (b, fld);
|
||||
if (a.zero() ) return b;
|
||||
b.mod (a);
|
||||
dump (b);
|
||||
b.mod (a, fld);
|
||||
}
|
||||
//unreachable
|
||||
return polynomial();
|
||||
}
|
||||
|
||||
bool polynomial::is_irreducible()
|
||||
bool polynomial::is_irreducible (gf2m&fld)
|
||||
{
|
||||
//Ben-Or irreducibility test
|
||||
polynomial xi; //x^(2^i) in our case
|
||||
|
@ -89,36 +102,41 @@ bool polynomial::is_irreducible()
|
|||
xmodf[0] = 0;
|
||||
xmodf[1] = 1; //x
|
||||
xi = xmodf;
|
||||
xmodf.mod (*this); //mod f
|
||||
xmodf.mod (*this, fld); //mod f
|
||||
|
||||
uint n = degree();
|
||||
for (uint i = 1; i <= n / 2; ++i) {
|
||||
uint d = degree();
|
||||
for (uint i = 1; i <= d / 2; ++i) {
|
||||
t = xi;
|
||||
t.mult (xi); //because mult would destroy xi on xi.mult(xi)
|
||||
t.mod (*this);
|
||||
t.mult (xi, fld); //because mult would destroy xi on xi.mult(xi)
|
||||
t.mod (*this, fld);
|
||||
xi = t;
|
||||
t.add (xmodf);
|
||||
t.add (xmodf, fld);
|
||||
|
||||
t = t.gcd (*this);
|
||||
t = t.gcd (*this, fld);
|
||||
if (t.degree() != 0) //gcd(f,x^2^i - x mod f) != 1
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void polynomial::generate_random_irreducible (uint s, prng & rng)
|
||||
void polynomial::generate_random_irreducible (uint s, gf2m&fld, prng & rng)
|
||||
{
|
||||
resize (s + 1);
|
||||
item (s) = 1; //degree s
|
||||
item (0) = 1; //not divisible by x^1
|
||||
for (uint i = 1; i < s; ++i) item (i) = rng.random (2);
|
||||
while (!is_irreducible() ) {
|
||||
uint pos = 1 + rng.random (s - 1);
|
||||
item (pos) = !item (pos);
|
||||
item (0) = 1 + rng.random (fld.n - 1); //not divisible by x^1
|
||||
for (uint i = 1; i < s; ++i) item (i) = rng.random (fld.n);
|
||||
cout << "start ";
|
||||
dump (*this);
|
||||
while (!is_irreducible (fld) ) {
|
||||
cout << "retry ";
|
||||
dump (*this);
|
||||
uint pos = rng.random (s);
|
||||
item (pos) = pos == 0 ?
|
||||
(1 + rng.random (fld.n - 1) ) : rng.random (fld.n);
|
||||
}
|
||||
}
|
||||
|
||||
void polynomial::compute_mod_squaring_matrix (matrix&r)
|
||||
void polynomial::compute_square_root_matrix (vector<polynomial>&r, gf2m&fld)
|
||||
{
|
||||
int d = degree();
|
||||
if (d < 0) return;
|
||||
|
@ -129,9 +147,12 @@ void polynomial::compute_mod_squaring_matrix (matrix&r)
|
|||
col.resize (i + 1, 0);
|
||||
col[i] = 1;
|
||||
t = col;
|
||||
col.mult (t);
|
||||
col.mod (*this);
|
||||
col.mult (t, fld);
|
||||
col.mod (*this, fld);
|
||||
col.resize (d, 0);
|
||||
r[i] = col;
|
||||
}
|
||||
|
||||
//TODO gauss
|
||||
}
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue