restructuralization

- removed cfs_qd (I didn't find a workable specification and it's still
  slow&ugly)
- removed mce_oc (it's just insecure and no one will use that)
- removed library structure, it isn't neccesary anyway
- added primitives for hashing to prepare for FMTseq
This commit is contained in:
Mirek Kratochvil 2012-12-22 14:09:19 +01:00
parent 17d6a55141
commit d1fe9b176b
27 changed files with 1557 additions and 998 deletions

View file

@ -2,7 +2,7 @@
# simple autogen script that generates basic layout for autotools.
COMMON_CPPFLAGS="-I/usr/local/include -I\$(srcdir)/include/"
COMMON_CPPFLAGS="-I/usr/local/include"
COMMON_CFLAGS="-Wall"
COMMON_LDFLAGS="-L/usr/local/lib"
COMMON_LDADD=""
@ -16,19 +16,14 @@ DISTDIRS=""
echo "AUTOMAKE_OPTIONS = subdir-objects" >>$OUT
echo "dist_noinst_SCRIPTS = autogen.sh" `for i in $DISTDIRS ; do find \$i -type f ; done | tr "\n" " " ` >>$OUT
echo "noinst_HEADERS = `find include/ -type f -name \*.h |tr \"\n\" \" \" `" >>$OUT
echo "noinst_HEADERS += `find lib/ -type f -name \*.h |tr \"\n\" \" \" `" >>$OUT
echo "bin_PROGRAMS = ccr" >>$OUT
echo "ccrdir = src/" >>$OUT
echo "ccr_SOURCES = `( find src/ -type f -name \*.c ; find src/ -type f -name \*.cpp ) |tr \"\n\" \" \" ` " >>$OUT
echo "ccr_SOURCES += `(find lib/ -type f -name *.c; find lib/ -type f -name *.cpp)|tr \"\n\" \" \" ` " >>$OUT
echo "noinst_HEADERS += `find src/ -type f -name \*.h |tr \"\n\" \" \" `" >>$OUT
echo "noinst_HEADERS = `find src/ -type f -name \*.h |tr \"\n\" \" \" `" >>$OUT
echo "ccr_CPPFLAGS = -I\$(srcdir)/$i/ ${COMMON_CPPFLAGS}" >>$OUT
echo "ccr_CFLAGS = ${COMMON_CFLAGS}" >>$OUT
echo "ccr_LDFLAGS = ${COMMON_LDFLAGS}" >>$OUT
echo "ccr_LDADD = -lgmp ${COMMON_LDADD} " >>$OUT
[ -f "src/Makefile.am.extra" ] && cat "src/Makefile.am.extra" >>$OUT
libtoolize --force && aclocal && autoconf && automake --add-missing

View file

@ -1,580 +0,0 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#include "codecrypt.h"
using namespace ccr;
using namespace ccr::cfs_qd;
#include "decoding.h"
#include "qd_utils.h"
#include <set>
int cfs_qd::generate (pubkey&pub, privkey&priv, prng&rng,
uint m, uint T, uint t, uint block_discard)
{
priv.fld.create (m);
priv.T = T;
uint block_size = 1 << T;
if (t > block_size) return 2;
priv.t = t;
//convenience
gf2m&fld = priv.fld;
std::vector<uint>&essence = priv.essence;
std::vector<uint> support, Hsig;
polynomial g;
uint i, j;
//prepare for data
Hsig.resize (fld.n);
support.resize (fld.n);
essence.resize (m + 1);
//note that q=2^m, algo. n=q/2, log n = m-1
//retry generating until goppa code is produced.
for (;;) {
std::cout << "attempt" << std::endl;
std::set<uint> used;
used.clear();
//first off, compute the H signature
Hsig[0] = choose_random (fld.n, rng, used);
essence[m] = fld.inv (Hsig[0]);
//essence[m] is now used as precomputed 1/h_0
for (uint s = 0; s < m; ++s) {
i = 1 << s; //i = 2^s
Hsig[i] = choose_random (fld.n, rng, used);
essence[s] = fld.add (essence[m], fld.inv (Hsig[i]) );
used.insert (fld.inv (essence[s]) );
for (j = 1; j < i; ++j) {
uint hij = fld.inv
(fld.add
(fld.inv (Hsig[i]),
fld.add (
fld.inv (Hsig[j]),
essence[m]
) ) );
if ( (!Hsig[i]) || (!Hsig[j]) ) hij = 0;
Hsig[i + j] = hij;
if (hij) {
used.insert (Hsig[i + j]);
/*used.insert (fld.inv
(fld.add
(fld.inv (Hsig[i + j]),
essence[m]) ) );*/
}
}
}
std::cout << "Gen Hsig: ";
for (i = 0; i < fld.n; ++i) std::cout << Hsig[i] << ' ';
std::cout << std::endl;
//let's play with blocks.
uint block_size = 1 << T,
h_block_count = fld.n / block_size,
block_count = h_block_count - block_discard;
//check if we have enough good blocks.
std::vector<bool> block_status;
uint badblocks;
block_status.resize (h_block_count);
badblocks = 0;
for (i = 0; i < h_block_count; ++i) {
block_status[i] = true;
for (j = 0; j < block_size; ++j)
if (!Hsig[i * block_size + j]) {
block_status[i] = false;
break;
}
if (!block_status[i]) ++badblocks;
}
std::cout << "badblocks: " << badblocks << std::endl;
if (badblocks > block_discard) continue; //don't have enough good blocks
if (!block_status[0]) continue; //cannot assemble goppa poly
std::cout << "lol contd." << std::endl;
//reconstruct g
used.clear();
g.clear();
g.resize (1, 1); //g(x)=1 so we can multiply it
polynomial tmp;
tmp.resize (2, 1); //tmp(x)=x-1
bool consistent = true;
for (i = 0; i < t; ++i) {
//tmp(x)=x-z=x-(1/h_i) where h_i is squared!
tmp[0] = fld.inv (Hsig[i]);
if (used.count (tmp[0]) ) {
consistent = false;
break;
}
used.insert (tmp[0]);
g.mult (tmp, fld);
}
if (!consistent) continue; //retry
std::cout << "lol have g: " << g;
//compute the support, retry if it has two equal elements.
for (i = 0; i < fld.n; ++i) {
if (!block_status[i / block_size]) continue;
support[i] = fld.add (
fld.inv (Hsig[i]),
essence[m]);
std::cout << "support " << i << " = " << support[i] << std::endl;
if (used.count (support[i]) ) {
std::cout << "support inconsistent at " << i << std::endl;
++badblocks;
block_status[i / block_size] = false;
break;
}
used.insert (support[i]);
}
std::cout << "bad: " << badblocks << std::endl;
if (badblocks > block_discard) continue;
//assemble blocks to bl
std::vector<polynomial> bl, blp;
bl.resize (h_block_count);
for (i = 0; i < h_block_count; ++i) {
bl[i].resize (block_size);
for (j = 0; j < block_size; ++j)
bl[i][j] = Hsig[i * block_size + j];
}
//permute the blocks. first move the damaged to discard area
priv.block_perm.generate_identity (h_block_count);
uint oks = h_block_count;
for (i = 0; i < oks; ++i)
if (!block_status[i]) {
std::cout << "removing one" << std::endl;
--oks;
priv.block_perm[i] = oks;
priv.block_perm[oks] = i;
//swap block statuses as well
bool tmp = block_status[i];
block_status[i] = block_status[oks];
block_status[oks] = tmp;
--i;
}
std::cout << "BLOCK " << priv.block_perm;
permutation rest_perm;
rest_perm.generate_random (oks, rng);
//permute the undamaged part of block_perm by hand TODO FIXME
//for (i = 0; i < oks; ++i) rest_perm[i] = priv.block_perm[rest_perm[i]];
//for (i = 0; i < oks; ++i) priv.block_perm[i] = rest_perm[i];
//now we can safely permute and discard blocks
priv.block_perm.permute (bl, blp);
blp.resize (block_count);
//permute individual blocks
priv.block_perms.resize (block_count);
bl.resize (blp.size() );
for (i = 0; i < block_count; ++i) {
priv.block_perms[i] = rng.random (block_size);
permutation::permute_dyadic (priv.block_perms[i],
blp[i], bl[i]);
}
//construct H
pub.qd_sigs.resize (fld.m);
bvector col;
bvector block;
for (i = 0; i < fld.m; ++i)
pub.qd_sigs[i].resize (block_count * block_size);
for (i = 0; i < block_count; ++i) {
col.from_poly_cotrace (bl[i], fld);
for (j = 0; j < fld.m; ++j) {
col.get_block (j * block_size,
block_size, block);
pub.qd_sigs[j].set_block
(block, block_size * i);
}
}
//finish the pubkey
pub.T = T;
pub.t = t;
return 0;
}
}
int privkey::prepare()
{
uint s, i, j, k;
std::vector<uint> Hsig, support;
uint omega;
uint block_count = block_perms.size(),
block_size = 1 << T;
//compute H signature from essence
Hsig.resize (fld.n);
Hsig[0] = fld.inv (essence[fld.m]);
for (s = 0; s < fld.m; ++s) {
i = 1 << s; //i = 2^s
Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m]) );
for (j = 1; j < i; ++j)
Hsig[i + j] = fld.inv
(fld.add
(fld.inv (Hsig[i]),
fld.add (
fld.inv (Hsig[j]),
essence[fld.m]
) ) );
}
std::cout << "Gen Hsig: ";
for (i = 0; i < fld.n; ++i) std::cout << Hsig[i] << ' ';
std::cout << std::endl;
//goppa polynomial with omega=0
std::set<uint> used;
used.clear();
polynomial tmp;
g.clear();
g.resize (1, 1); //g(x)=1
tmp.clear();
tmp.resize (2, 1); //tmp(x)=x+1
for (i = 0; i < t; ++i) {
tmp[0] = fld.inv (Hsig[i]); //tmp(x)=x+1/h_i
if (used.count (tmp[0]) )
return 1;
std::cout << tmp[0] << std::endl;
used.insert (tmp[0]);
g.mult (tmp, fld);
}
std::cout << "HERE 1" << std::endl;
//compute the support with omega=0
support.resize (fld.n);
for (i = 0; i < fld.n; ++i) {
//don't compute with discarded support
if (block_perm[i / block_size] >= block_count) continue;
support[i] = fld.add
(fld.inv (Hsig[i]),
essence[fld.m]);
std::cout << "support " << i << " = " << support[i] << std::endl;
if (used.count (support[i]) ) //invalid support
return 1;
used.insert (support[i]);
}
std::cout << "HERE LOLOLOLOLOL" << std::endl;
//choose omega
omega = fld.n;
for (i = 0; i < fld.n; ++i)
if (!used.count (i) ) {
omega = i;
break;
}
if (omega == fld.n) return 1;
//modify support to omega-ized version
for (i = 0; i < support.size(); ++i)
support[i] = fld.add (support[i], omega);
//modify g to omega-ized version
g.clear();
tmp.clear();
g.resize (1, 1); //g(x)=1
tmp.resize (2, 1); //tmp(x)=x+1
for (i = 0; i < t; ++i) {
tmp[0] = fld.add (fld.inv (Hsig[i]), omega);
g.mult (tmp, fld);
}
g.compute_square_root_matrix (sqInv, fld);
// prepare permuted support, from that prepare permuted check matrix
// (so that it can be applied directly)
uint pos;
std::vector<uint> sbl1, sbl2, permuted_support;
sbl1.resize (block_size);
sbl2.resize (block_size);
permuted_support.resize (block_size * block_count);
//permute support
for (i = 0; i < fld.n / block_size; ++i) {
pos = block_perm[i];
if (pos >= block_count) continue; //was discarded
//permute i-th block of support
for (j = 0; j < block_size; ++j)
sbl1[j] = support[j + i * block_size];
permutation::permute_dyadic (block_perms[pos], sbl1, sbl2);
//store support to permuted support
for (j = 0; j < block_size; ++j)
permuted_support[j + pos * block_size] = sbl2[j];
}
//convert the permuted support to actual lookup
support_pos.clear();
//fld.n in support lookup means that it isn't there (we don't have -1)
support_pos.resize (fld.n, fld.n);
for (i = 0; i < block_size * block_count; ++i)
support_pos[permuted_support[i]] = i;
/*
* TODO move this to separate function
*
* prepare the matrix to compute decodable syndrome from QD matrix. From Barreto's slides:
*
* A is public check matrix
* H is private check matrix producing decodable syndromes
*
* H=SA for some S
* therefore if
*
* synd = A * codeword
*
* then
*
* S*synd = H*codeword
*
* and S = H * A^T * (A * A^T)^-1
*/
std::vector<std::vector<uint> > ma, mb, tmpa, tmph;
std::vector<uint> t1, t2;
/*
* First, precompute the matrices A and H
*/
tmpa.resize (t);
tmph.resize (t);
for (i = 0; i < t; ++i) {
tmpa[i].resize (fld.n);
tmph[i].resize (fld.n);
}
for (i = 0; i < t; ++i)
permutation::permute_dyadic (i, Hsig, tmpa[i]);
std::cout << "TMPA" << std::endl;
for (i = 0; i < t; ++i) {
for (j = 0; j < fld.n; ++j) std::cout << tmpa[i][j] << ' ';
std::cout << std::endl;
}
polynomial tmpcol;
for (i = 0; i < fld.n; ++i) {
tmpcol.resize (2);
tmpcol[0] = support[i];
tmpcol[1] = 1;
tmpcol.inv (g, fld);
tmpcol.resize (t, 0);
for (j = 0; j < t; ++j) tmph[j][i] = tmpcol[j];
}
/*
* compute H * H^T to ma and A * H^T to mb.
*/
ma.resize (t);
mb.resize (t);
for (i = 0; i < t; ++i) {
ma[i].resize (t, 0);
mb[i].resize (t, 0);
}
for (i = 0; i < t; ++i) for (j = 0; j < t; ++j) {
for (k = 0; k < fld.n; ++k) {
ma[i][j] = fld.add (ma[i][j], fld.mult (tmph[i][k], tmph[j][k]) );
mb[i][j] = fld.add (mb[i][j], fld.mult (tmpa[i][k], tmph[j][k]) );
}
}
std::cout << "MA" << std::endl;
for (i = 0; i < t; ++i) {
for (j = 0; j < t; ++j) std::cout << ma[i][j] << ' ';
std::cout << std::endl;
}
std::cout << "MB" << std::endl;
for (i = 0; i < t; ++i) {
for (j = 0; j < t; ++j) std::cout << mb[i][j] << ' ';
std::cout << std::endl;
}
/*
* now invert mb into ma as (mb|ma) to (I|ma*mb^-1)
*
* (result will be transposed, but that's actually good for our purpose)
*/
uint x;
//gauss step
for (i = 0; i < t; ++i) {
//find pivot
for (j = i; j < t; ++j) if (mb[j][i] != 0) break;
if (j >= t) return 1; //no pivot -> not invertible
if (j > i) {
ma[j].swap (ma[i]);
mb[j].swap (mb[i]);
}
//normalize
x = fld.inv (mb[i][i]);
for (j = 0; j < t; ++j) {
ma[i][j] = fld.mult (ma[i][j], x);
mb[i][j] = fld.mult (mb[i][j], x);
}
//zero rows below
for (j = i + 1; j < t; ++j) {
x = mb[j][i];
if (x == 0) continue;
for (k = 0; k < t; ++k) {
ma[j][k] = fld.add (ma[j][k], fld.mult (x, ma[i][k]) );
mb[j][k] = fld.add (mb[j][k], fld.mult (x, mb[i][k]) );
}
}
}
//jordan step
std::cout << "jordan step..." << std::endl;
for (i = 0; i < t; ++i) {
for (j = i + 1; j < t; ++j) {
x = mb[t - j - 1][t - i - 1];
if (x == 0) continue;
for (k = 0; k < t; ++k) {
ma[t - j - 1][k] = fld.add (ma[t - j - 1][k], fld.mult (x, ma[t - i - 1][k]) );
mb[t - j - 1][k] = fld.add (mb[t - j - 1][k], fld.mult (x, mb[t - i - 1][k]) );
}
}
}
//result is now transposed in ma.
syndS.resize (t);
for (i = 0; i < t; ++i) {
syndS[i].resize (t);
for (j = 0; j < t; ++j) syndS[i][j] = ma[i][j];
}
std::cout << "SyndS is OKAY!" << std::endl;
polynomial decsynd, loc;
for (i = 0; i < t; ++i)
decsynd.add_mult (syndS[i], Hsig[i], fld);
compute_goppa_error_locator (decsynd, fld, g, sqInv, loc);
std::cout << "TEST LOCATOR: " << loc;
return 0;
}
int privkey::sign (const bvector& hash, bvector&signature,
uint delta, uint attempts, prng&rng)
{
if (hash.size() != hash_size() ) return 2;
polynomial synd, decsynd, tmp, loc;
bvector ev, h2;
uint i;
for (uint att = 0; att < attempts; ++att) {
h2 = hash;
for (i = 0; i < delta; ++i) {
uint p = rng.random (h2.size() );
h2[p] = !h2[p];
}
h2.to_poly_cotrace (synd, fld);
std::cout << "SYND" << synd;
decsynd.clear();
for (i = 0; i < t; ++i)
decsynd.add_mult (syndS[i], synd[i], fld);
std::cout << "SYND PREP" << decsynd;
compute_goppa_error_locator (decsynd, fld, g, sqInv, loc);
if (!evaluate_error_locator_trace (loc, ev, fld) ) continue;
//we might have it!
std::cout << ev;
signature.clear();
signature.resize (signature_size(), 0);
for (i = 0; i < fld.n; ++i) if (ev[i]) {
uint epos = support_pos[i];
if (epos == fld.n) break; //bad luck, undecodable
signature[epos] = 1;
}
if (i == fld.n) return 0;
}
return 1; //no attempts left.
}
int pubkey::verify (const bvector&signature, const bvector&hash, uint delta)
{
if (signature.size() != signature_size() ) return 2;
if (hash.size() != hash_size() ) return 2;
uint i, j;
uint block_size = 1 << T;
bvector synd, b1, b2;
synd.resize (t * qd_sigs.size(), 0);
//compute the syndrome
for (i = 0; i < signature_size(); ++i) {
if (!signature[i]) continue;
//this is actually quite fast, as it happens only several times
for (j = 0; j < qd_sigs.size(); ++j) {
qd_sigs[j].get_block ( (i / block_size) *block_size,
block_size, b1);
permutation::permute_dyadic (i % block_size, b1, b2);
b2.resize (t);
synd.add_offset (b2, t * j);
}
}
std::cout << "SYNDROME: " << synd;
synd.add (hash);
std::cout << "DIFF: " << synd;
if (synd.hamming_weight() > delta) return 1;
return 0;
}

View file

@ -1,185 +0,0 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#include "codecrypt.h"
using namespace ccr;
using namespace ccr::mce_oc;
#include "decoding.h"
int mce_oc::generate (pubkey&pub, privkey&priv,
prng&rng, uint m, uint t, uint n)
{
priv.fld.create (m);
uint subplain_size = priv.fld.n - (m * t),
codeword_size = (n * subplain_size) + (m * t);
//prepare resulting generator matrix
matrix g;
g.resize (codeword_size);
for (uint i = 0; i < codeword_size; ++i)
g[i].resize (subplain_size * n);
//generate n subcodes
priv.codes.resize (n);
for (uint i = 0; i < n; ++i) {
privkey::subcode& sc = priv.codes[i];
sc.g.generate_random_irreducible (t, priv.fld, rng);
sc.g.compute_goppa_check_matrix (sc.h, priv.fld);
matrix subg;
while (!sc.h.create_goppa_generator (subg, sc.hperm, rng) );
g.set_block (subplain_size * i, subplain_size * i, subg);
}
//scramble matrix
matrix S;
S.generate_random_with_inversion (g.height(), priv.Sinv, rng);
//scramble permutation
permutation P;
P.generate_random (g.width(), rng);
P.compute_inversion (priv.Pinv);
//public key
pub.n = n;
pub.t = t;
S.mult (g);
P.permute (S, pub.G);
return 0;
}
int privkey::prepare ()
{
for (uint i = 0; i < codes.size(); ++i) {
codes[i].g.compute_goppa_check_matrix (codes[i].h, fld);
codes[i].g.compute_square_root_matrix (codes[i].sqInv, fld);
}
return 0;
}
int privkey::sign (const bvector&in, bvector&out,
uint delta, uint attempts, prng&rng)
{
if (in.size() != hash_size() ) return 2;
if (!codes.size() ) return 2;
//remove permutation
bvector inp;
Pinv.permute (in, inp);
//decoding helpers
bvector e, e2, synd, synd_orig, cw, cwc, plain, overlap;
std::vector<uint> epos;
permutation hpermInv;
polynomial loc, Synd;
uint i, t;
uint mt = fld.m * codes[0].g.degree(),
subplain_size = fld.n - mt;
plain.clear();
//decode the rest
for (uint ci = 0; ci < codes.size(); ++ci) {
e.clear();
e.resize (fld.n, 0);
epos.resize (delta, 0);
//create the codeword
cw.clear();
if (ci == 0)
cw.insert (cw.end(), inp.begin(), inp.begin() + fld.n);
else {
cw = overlap;
bvector::iterator tmp = inp.begin();
tmp += (ci * subplain_size) + mt;
cw.insert (cw.end(), tmp, tmp + subplain_size);
}
//create the overlap, xor it to codeword
if (ci + 1 < codes.size() ) {
overlap.resize (mt);
for (uint i = 0; i < mt; ++i) overlap[i] = rng.random (2);
cw.add_offset (overlap, subplain_size);
}
//compute syndrome with no extra errors
codes[ci].hperm.compute_inversion (hpermInv);
hpermInv.permute (cw, cwc); //canonical
codes[ci].h.mult_vec_right (cwc, synd_orig);
for (t = 0; t < attempts; ++t) {
//compute syndrome with extra errors
synd = synd_orig;
for (i = 0; i < delta; ++i) {
epos[i] = rng.random (fld.n);
if (!e[epos[i]])
synd.add (codes[ci].h[epos[i]]);
e[epos[i]] = 1;
}
synd.to_poly (Synd, fld);
compute_goppa_error_locator (Synd, fld,
codes[ci].g,
codes[ci].sqInv, loc);
if (evaluate_error_locator_trace (loc, e2, fld) ) {
cwc.add (e);
cwc.add (e2);
codes[ci].hperm.permute (cwc, cw);
plain.insert (plain.end(), cw.begin(),
cw.begin() +
(fld.n - (fld.m *
codes[ci].g.degree() ) )
);
break;
}
for (i = 0; i < delta; ++i) {
e[epos[i]] = 0;
}
}
if (t >= attempts) //decoding failed
return 1;
}
Sinv.mult_vecT_left (plain, out);
return 0;
}
int pubkey::verify (const bvector&in, const bvector&hash, uint delta)
{
bvector tmp;
if (!G.mult_vecT_left (in, tmp) ) return 2; //sizing problem
if (hash.size() != tmp.size() ) return 1; //invalid hash size
tmp.add (hash);
if (tmp.hamming_weight() > n * (t + delta) ) return 1; //too far
return 0;
}

View file

@ -17,7 +17,6 @@
*/
#include "codecrypt.h"
using namespace ccr;
uint bvector::hamming_weight()
{

View file

@ -36,9 +36,6 @@
item(size_type n, size_type m) const \
{ return (*this)[n][m]; };
namespace ccr
{
/*
* data serialization format
*/
@ -552,157 +549,14 @@ public:
int generate (pubkey&, privkey&, prng&, uint m, uint T, uint b);
}
/*
* QD-CFS
*
* according to "Quasi-dyadic CFS signatures" by Baretto, Cayrel, Misoczki,
* Niebuhr.
*
* As always with Niederreiter, hash must be of weight t (=1<<T)
*/
namespace cfs_qd
{
class privkey
{
public:
std::vector<uint> essence;
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
uint T, t; //size of blocks is 1<<T, t is error correction capability
permutation block_perm; //order of blocks
std::vector<uint> block_perms; //dyadic permutations of blocks
//derivable stuff
polynomial g; //goppa
std::vector<polynomial> sqInv; //sqroot mod g
//pre-permuted positions of support rows
std::vector<uint> support_pos;
std::vector<polynomial> syndS;
int sign (const bvector&, bvector&, uint d, uint attempts, prng&);
int prepare();
uint hash_size() {
return t * fld.m;
}
uint signature_size() {
return (1 << T) * block_perms.size();
}
uint signature_weight() {
return t;
}
sencode* serialize();
bool unserialize (sencode*);
};
class pubkey
{
public:
uint t, T;
//cols of H
std::vector<bvector> qd_sigs;
int verify (const bvector&, const bvector&, uint);
uint hash_size() {
return t * qd_sigs.size();
}
uint signature_size() {
return qd_sigs[0].size();
}
uint signature_weight() {
return t;
}
sencode* serialize();
bool unserialize (sencode*);
};
int generate (pubkey&, privkey&, prng&, uint m, uint T, uint t, uint b);
}
/*
* McEliece on Overlapping Chain of Goppa Codes
*
* Similar to Hamdi's Chained BCH Codes, but with improvements.
*
* This is experimental, unverified, probably insecure, but practical scheme
* that achieves good speed, probability and non-exponential key size for full
* decoding that is needed to produce signatures. Technique is described in
* documentation, with some (probably sufficient) notes in source code.
*
* Note that encryption using this scheme is impossible, as there is only an
* extremely tiny probability of successful decoding.
*/
namespace mce_oc
{
class privkey
{
public:
matrix Sinv;
permutation Pinv;
gf2m fld;
class subcode
{
public:
polynomial g;
permutation hperm;
//derivables
matrix h;
std::vector<polynomial> sqInv;
};
std::vector<subcode> codes;
int sign (const bvector&, bvector&, uint, uint, prng&);
int prepare();
uint hash_size() {
return Pinv.size();
}
uint signature_size() {
return Sinv.size();
}
sencode* serialize();
bool unserialize (sencode*);
};
class pubkey
{
public:
matrix G;
uint n, t;
int verify (const bvector&, const bvector&, uint);
uint hash_size() {
return G.width();
}
uint signature_size() {
return G.height();
}
sencode* serialize();
bool unserialize (sencode*);
};
//n is the number of subcodes used
int generate (pubkey&, privkey&, prng&, uint m, uint t, uint n);
}
} //namespace ccr
//global overload for iostream operators
#include <iostream>
std::ostream& operator<< (std::ostream&o, const ccr::polynomial&);
std::ostream& operator<< (std::ostream&o, const ccr::permutation&);
std::ostream& operator<< (std::ostream&o, const ccr::gf2m&);
std::ostream& operator<< (std::ostream&o, const ccr::matrix&);
std::ostream& operator<< (std::ostream&o, const ccr::bvector&);
std::ostream& operator<< (std::ostream&o, const polynomial&);
std::ostream& operator<< (std::ostream&o, const permutation&);
std::ostream& operator<< (std::ostream&o, const gf2m&);
std::ostream& operator<< (std::ostream&o, const matrix&);
std::ostream& operator<< (std::ostream&o, const bvector&);
#endif // _CODECRYPT_H_

View file

@ -21,8 +21,6 @@
#include "codecrypt.h"
using namespace ccr;
void compute_goppa_error_locator (polynomial&syndrome,
gf2m&fld,
polynomial&goppa,

25
src/encryption.h Normal file
View file

@ -0,0 +1,25 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _ccr_hash_h_
#define _ccr_hash_h_
#endif

View file

@ -18,8 +18,6 @@
#include "codecrypt.h"
using namespace ccr;
/*
* helpful stuff for arithmetic in GF(2^m) - polynomials over GF(2).
*/

46
src/hash.h Normal file
View file

@ -0,0 +1,46 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _ccr_hash_h_
#define _ccr_hash_h_
/*
* hash function templates
*
* usuable mostly for injection into actual code
*/
class hash {
public:
hash();
virtual ~hash()=0;
virtual void init()=0;
virtual void update(const char*a, size_t len)=0;
virtual size_t size()=0;
virtual void final(const char*a)=0;
};
class hash_factory {
public:
hash* create();
void free(hash*);
};
#endif

View file

@ -20,7 +20,6 @@
#include <iostream>
using namespace std;
using namespace ccr;
ostream& operator<< (ostream&o, const polynomial& p)
{

23
src/keymgmt.h Normal file
View file

@ -0,0 +1,23 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _ccr_keys_h_
#define _ccr_keys_h_
#endif

View file

@ -17,14 +17,16 @@
*/
#include "codecrypt.h"
#include "arcfour.h"
#include <stdlib.h>
#include <time.h>
#include <iostream>
#include <iomanip>
using namespace std;
class primitiverng : public ccr::prng
class primitiverng : public prng
{
public:
uint random (uint n) {
@ -38,20 +40,150 @@ public:
int main()
{
arcfour<unsigned short> c;
if (!c.init (10) ) {
cout << "haha." << endl;
return 1;
}
std::vector<unsigned short> k;
k.push_back ('K');
k.push_back ('e');
k.push_back ('y');
k.push_back ('l');
k.push_back ('o');
k.push_back ('l');
c.load_key (k);
for (int i = 0; i < 20; ++i)
cout << hex << (int) c.gen() << endl;
return 0;
#if 0
primitiverng r;
r.seed (0);
mce::pubkey pub, pub2;
mce::privkey priv, priv2;
mce::generate (pub, priv, r, 6, 2);
sencode *s;
std::cout << priv.Pinv;
s = priv.serialize();
std::cout << s->encode();
if (priv.unserialize (s) )
std::cout << priv.Pinv;
sencode_destroy (s);
return 0;
sencode_list*x = new sencode_list;
x->items.push_back (new sencode_int (1) );
x->items.push_back (new sencode_bytes ("ahoj") );
std::string tmp = x->encode();
std::cout << tmp << std::endl;
sencode_destroy (x);
sencode*s;
sencode_decode (tmp, &s);
std::cout << s->encode() << std::endl;
sencode_destroy (s);
bvector b;
b.resize (9);
b[0] = 1;
b[5] = 1;
b[8] = 1;
s = b.serialize();
b[6] = 1;
std::cout << s->encode() << std::endl;
if (b.unserialize (s) ) {
std::cout << b ;
}
sencode_destroy (s);
return 0;
/* this is just a test, don't mind it */
primitiverng r;
r.seed (0);
ccr::mce_qd::privkey priv;
ccr::mce_qd::pubkey pub;
ccr::mce_qd::generate (pub, priv, r, 14, 8, 2);
/*
mce::privkey priv;
mce::pubkey pub;
mce::generate(pub,priv,r,8,7);
cout << "cipher size: " << priv.cipher_size() << ' ' << pub.cipher_size() << endl;
cout << "plain size: " << priv.plain_size() << ' ' << pub.plain_size() << endl;
bvector a,b;
a.resize(priv.hash_size(),0);
a[0]=1;
a[2]=1;
a[4]=1;
a[5]=1;
a[6]=1;
a[7]=1;
a[10]=1;
a[12]=1;
a[16]=1;
a[20]=1;
a[22]=1;
a[24]=1;
a[25]=1;
a[26]=1;
a[27]=1;
a[110]=1;
a[112]=1;
a[116]=1;
priv.prepare();
priv.sign(a,b,3,10000,r);
std::cout << a << b << pub.verify(b,a,3) << std::endl;
*/
cfs_qd::privkey priv;
cfs_qd::pubkey pub;
cfs_qd::generate (pub, priv, r, 7, 3, 7, 1);
cout << "hash size: " << priv.hash_size() << ' ' << pub.hash_size() << endl;
cout << "signature size: " << priv.signature_size() << ' ' << pub.signature_size() << endl;
cout << "sig weight: " << priv.signature_weight() << ' ' << pub.signature_weight() << endl;
priv.prepare();
ccr::bvector plain;
bvector hash;
hash.resize (priv.hash_size(), 0);
hash[0] = 1;
hash[2] = 1;
hash[4] = 1;
hash[5] = 1;
hash[6] = 1;
hash[7] = 1;
hash[10] = 1;
hash[12] = 1;
hash[16] = 1;
hash[20] = 1;
hash[22] = 1;
hash[24] = 1;
hash[25] = 1;
hash[26] = 1;
hash[27] = 1;
hash[110] = 1;
hash[112] = 1;
hash[116] = 1;
cout << "HASH " << endl;
cout << hash;
bvector sig;
if (priv.sign (hash, sig, 3, 10000, r) ) {
cout << "failed" << endl;
return 0;
}
cout << "SIGNATURE " << sig;
if (pub.verify (sig, hash, 3) )
cout << "verify failed" << endl;
else cout << "verify okay" << endl;
#endif
#if 0
bvector plain;
plain.resize (pub.plain_size(), 0);
plain[0] = 1;
plain[1] = 1;
@ -60,18 +192,19 @@ int main()
cout << "PLAINTEXT" << endl;
cout << plain;
ccr::bvector cipher;
bvector cipher;
pub.encrypt (plain, cipher, r);
cout << "CIPHERTEXT" << endl;
cout << cipher;
ccr::bvector decrypted;
bvector decrypted;
priv.decrypt (cipher, decrypted);
cout << "DECRYPTED" << endl;
cout << decrypted;
#endif
return 0;
}

View file

@ -18,8 +18,6 @@
#include "codecrypt.h"
using namespace ccr;
void matrix::resize2 (uint w, uint h, bool def)
{
resize (w);

View file

@ -18,8 +18,7 @@
#include "codecrypt.h"
using namespace ccr;
using namespace ccr::mce;
using namespace mce;
#include "decoding.h"

View file

@ -18,8 +18,7 @@
#include "codecrypt.h"
using namespace ccr;
using namespace ccr::mce_qd;
using namespace mce_qd;
#include "decoding.h"
#include "qd_utils.h"

23
src/message.h Normal file
View file

@ -0,0 +1,23 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _ccr_msg_h_
#define _ccr_msg_h_
#endif

View file

@ -18,10 +18,9 @@
#include "codecrypt.h"
#include "decoding.h"
using namespace nd;
using namespace ccr;
using namespace ccr::nd;
#include "decoding.h"
int nd::generate (pubkey&pub, privkey&priv, prng&rng, uint m, uint t)
{

View file

@ -18,8 +18,6 @@
#include "codecrypt.h"
using namespace ccr;
void permutation::compute_inversion (permutation&r) const
{
r.resize (size(), 0);

View file

@ -18,8 +18,6 @@
#include "codecrypt.h"
using namespace ccr;
int polynomial::degree() const
{
int r = -1;

View file

@ -22,8 +22,6 @@
#include "codecrypt.h"
#include <set>
using namespace ccr;
//FWHT matrix mult in O(n log n). parameters MUST be of 2^m size.
void fwht_dyadic_multiply (const bvector&, const bvector&, bvector&);

View file

@ -17,7 +17,6 @@
*/
#include "codecrypt.h"
using namespace ccr;
#include <sstream>
#include <list>
@ -66,7 +65,7 @@ fail:
pos = -1;
}
bool ccr::sencode_decode (const std::string& str, sencode**out)
bool sencode_decode (const std::string& str, sencode**out)
{
std::list<sencode*> stk;
int pos = 0;
@ -125,7 +124,7 @@ bool ccr::sencode_decode (const std::string& str, sencode**out)
return false;
}
void ccr::sencode_destroy (sencode*x)
void sencode_destroy (sencode*x)
{
x->destroy();
delete x;

View file

@ -18,8 +18,6 @@
#include "codecrypt.h"
using namespace ccr;
static sencode* serialize_uint_vector (std::vector<uint>*v)
{
sencode_list*l = new sencode_list;
@ -299,43 +297,3 @@ bool mce_qd::pubkey::unserialize (sencode* s)
return true;
}
sencode* cfs_qd::privkey::serialize()
{
}
bool cfs_qd::privkey::unserialize (sencode* s)
{
}
sencode* cfs_qd::pubkey::serialize()
{
}
bool cfs_qd::pubkey::unserialize (sencode* s)
{
}
sencode* mce_oc::privkey::serialize()
{
}
bool mce_oc::privkey::unserialize (sencode* s)
{
}
sencode* mce_oc::pubkey::serialize()
{
}
bool mce_oc::pubkey::unserialize (sencode* s)
{
}

1065
src/sha2.c Normal file

File diff suppressed because it is too large Load diff

197
src/sha2.h Normal file
View file

@ -0,0 +1,197 @@
/*
* FILE: sha2.h
* AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: sha2.h,v 1.1 2001/11/08 00:02:01 adg Exp adg $
*/
#ifndef __SHA2_H__
#define __SHA2_H__
#ifdef __cplusplus
extern "C" {
#endif
/*
* Import u_intXX_t size_t type definitions from system headers. You
* may need to change this, or define these things yourself in this
* file.
*/
#include <sys/types.h>
#ifdef SHA2_USE_INTTYPES_H
#include <inttypes.h>
#endif /* SHA2_USE_INTTYPES_H */
/*** SHA-256/384/512 Various Length Definitions ***********************/
#define SHA256_BLOCK_LENGTH 64
#define SHA256_DIGEST_LENGTH 32
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
#define SHA384_BLOCK_LENGTH 128
#define SHA384_DIGEST_LENGTH 48
#define SHA384_DIGEST_STRING_LENGTH (SHA384_DIGEST_LENGTH * 2 + 1)
#define SHA512_BLOCK_LENGTH 128
#define SHA512_DIGEST_LENGTH 64
#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1)
/*** SHA-256/384/512 Context Structures *******************************/
/* NOTE: If your architecture does not define either u_intXX_t types or
* uintXX_t (from inttypes.h), you may need to define things by hand
* for your system:
*/
#if 0
typedef unsigned char u_int8_t; /* 1-byte (8-bits) */
typedef unsigned int u_int32_t; /* 4-bytes (32-bits) */
typedef unsigned long long u_int64_t; /* 8-bytes (64-bits) */
#endif
/*
* Most BSD systems already define u_intXX_t types, as does Linux.
* Some systems, however, like Compaq's Tru64 Unix instead can use
* uintXX_t types defined by very recent ANSI C standards and included
* in the file:
*
* #include <inttypes.h>
*
* If you choose to use <inttypes.h> then please define:
*
* #define SHA2_USE_INTTYPES_H
*
* Or on the command line during compile:
*
* cc -DSHA2_USE_INTTYPES_H ...
*/
#ifdef SHA2_USE_INTTYPES_H
typedef struct _SHA256_CTX {
uint32_t state[8];
uint64_t bitcount;
uint8_t buffer[SHA256_BLOCK_LENGTH];
} SHA256_CTX;
typedef struct _SHA512_CTX {
uint64_t state[8];
uint64_t bitcount[2];
uint8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
#else /* SHA2_USE_INTTYPES_H */
typedef struct _SHA256_CTX {
u_int32_t state[8];
u_int64_t bitcount;
u_int8_t buffer[SHA256_BLOCK_LENGTH];
} SHA256_CTX;
typedef struct _SHA512_CTX {
u_int64_t state[8];
u_int64_t bitcount[2];
u_int8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
#endif /* SHA2_USE_INTTYPES_H */
typedef SHA512_CTX SHA384_CTX;
/*** SHA-256/384/512 Function Prototypes ******************************/
#ifndef NOPROTO
#ifdef SHA2_USE_INTTYPES_H
void SHA256_Init(SHA256_CTX *);
void SHA256_Update(SHA256_CTX*, const uint8_t*, size_t);
void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
char* SHA256_Data(const uint8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
void SHA384_Init(SHA384_CTX*);
void SHA384_Update(SHA384_CTX*, const uint8_t*, size_t);
void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
char* SHA384_Data(const uint8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
void SHA512_Init(SHA512_CTX*);
void SHA512_Update(SHA512_CTX*, const uint8_t*, size_t);
void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
char* SHA512_Data(const uint8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
#else /* SHA2_USE_INTTYPES_H */
void SHA256_Init(SHA256_CTX *);
void SHA256_Update(SHA256_CTX*, const u_int8_t*, size_t);
void SHA256_Final(u_int8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
char* SHA256_Data(const u_int8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
void SHA384_Init(SHA384_CTX*);
void SHA384_Update(SHA384_CTX*, const u_int8_t*, size_t);
void SHA384_Final(u_int8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
char* SHA384_Data(const u_int8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
void SHA512_Init(SHA512_CTX*);
void SHA512_Update(SHA512_CTX*, const u_int8_t*, size_t);
void SHA512_Final(u_int8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
char* SHA512_Data(const u_int8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
#endif /* SHA2_USE_INTTYPES_H */
#else /* NOPROTO */
void SHA256_Init();
void SHA256_Update();
void SHA256_Final();
char* SHA256_End();
char* SHA256_Data();
void SHA384_Init();
void SHA384_Update();
void SHA384_Final();
char* SHA384_End();
char* SHA384_Data();
void SHA512_Init();
void SHA512_Update();
void SHA512_Final();
char* SHA512_End();
char* SHA512_Data();
#endif /* NOPROTO */
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* __SHA2_H__ */

23
src/signatures.h Normal file
View file

@ -0,0 +1,23 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _ccr_sigs_h_
#define _ccr_sigs_h_
#endif