From fb5405633180cd89f3fc1c35b05e73c9d2d30c5b Mon Sep 17 00:00:00 2001 From: Mirek Kratochvil <exa.exa@gmail.com> Date: Sun, 2 Dec 2012 12:50:29 +0100 Subject: [PATCH] serialization and cfs_qd work --- include/codecrypt.h | 97 ++++++- lib/cfs_qd.cpp | 580 ++++++++++++++++++++++++++++++++++++++++++ lib/decoding.cpp | 2 +- lib/mce_qd.cpp | 61 ++--- lib/qd_utils.cpp | 12 + lib/qd_utils.h | 4 + lib/serialization.cpp | 101 +++++--- 7 files changed, 775 insertions(+), 82 deletions(-) create mode 100644 lib/cfs_qd.cpp diff --git a/include/codecrypt.h b/include/codecrypt.h index 2f4beb1..48c8168 100644 --- a/include/codecrypt.h +++ b/include/codecrypt.h @@ -207,6 +207,11 @@ public: void compute_inversion (permutation&) const; void generate_random (uint n, prng&); + void generate_identity (uint n) { + resize (n); + for (uint i = 0; i < n; ++i) + item (i) = i; + } //TODO permute_inv is easy, do it everywhere template<class A, class R> void permute (const A&a, R&r) const { @@ -425,6 +430,9 @@ public: uint signature_size() { return plain_size(); } + uint signature_weight() { + return plain_weight(); + } sencode* serialize(); bool unserialize (sencode*); @@ -454,6 +462,9 @@ public: uint signature_size() { return plain_size(); } + uint signature_weight() { + return plain_weight(); + } sencode* serialize(); bool unserialize (sencode*); @@ -480,14 +491,10 @@ public: gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2 uint T; //the QD's t parameter is 2^T. permutation block_perm; //order of blocks - permutation hperm; //block permutation of H block used to get G std::vector<uint> block_perms; //dyadic permutations of blocks + permutation hperm; //block permutation of H block used to get G //derivable stuff - std::vector<uint> Hsig; //signature of canonical H matrix - std::vector<uint> support; //computed goppa support - uint omega; - //cols of check matrix of g^2(x) std::vector<polynomial> Hc; //pre-permuted positions of support rows @@ -497,10 +504,10 @@ public: int prepare(); uint cipher_size() { - return (1 << T) * block_count; + return (1 << T) * hperm.size(); } uint plain_size() { - return (1 << T) * (block_count - fld.m); + return (1 << T) * (hperm.size() - fld.m); } sencode* serialize(); @@ -511,7 +518,7 @@ class pubkey { public: uint T; - std::vector<bvector> qd_sigs; + matrix qd_sigs; int encrypt (const bvector&, bvector&, prng&); @@ -521,15 +528,87 @@ public: uint plain_size() { return (1 << T) * qd_sigs.size(); } + + sencode* serialize(); + bool unserialize (sencode*); }; int generate (pubkey&, privkey&, prng&, uint m, uint T, uint b); } +/* + * QD-CFS + * + * according to "Quasi-dyadic CFS signatures" by Baretto, Cayrel, Misoczki, + * Niebuhr. + * + * As always with Niederreiter, hash must be of weight t (=1<<T) + */ +namespace cfs_qd +{ +class privkey +{ +public: + std::vector<uint> essence; + gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2 + uint T, t; //size of blocks is 1<<T, t is error correction capability + permutation block_perm; //order of blocks + std::vector<uint> block_perms; //dyadic permutations of blocks + + //derivable stuff + polynomial g; //goppa + std::vector<polynomial> sqInv; //sqroot mod g + //pre-permuted positions of support rows + std::vector<uint> support_pos; + std::vector<polynomial> syndS; + + int sign (const bvector&, bvector&, uint d, uint attempts, prng&); + int prepare(); + + uint hash_size() { + return t * fld.m; + } + uint signature_size() { + return (1 << T) * block_perms.size(); + } + uint signature_weight() { + return t; + } + + sencode* serialize(); + bool unserialize (sencode*); +}; + +class pubkey +{ +public: + uint t, T; + //cols of H + std::vector<bvector> qd_sigs; + + int verify (const bvector&, const bvector&, uint); + + uint hash_size() { + return t * qd_sigs.size(); + } + uint signature_size() { + return qd_sigs[0].size(); + } + uint signature_weight() { + return t; + } + + sencode* serialize(); + bool unserialize (sencode*); +}; + +int generate (pubkey&, privkey&, prng&, uint m, uint T, uint t, uint b); +} + /* * McEliece on Overlapping Chain of Goppa Codes * - * Similar to Hamdi's Chained BCH Codes, but with improvement. + * Similar to Hamdi's Chained BCH Codes, but with improvements. * * This is experimental, unverified, probably insecure, but practical scheme * that achieves good speed, probability and non-exponential key size for full diff --git a/lib/cfs_qd.cpp b/lib/cfs_qd.cpp new file mode 100644 index 0000000..0989011 --- /dev/null +++ b/lib/cfs_qd.cpp @@ -0,0 +1,580 @@ + +/* + * This file is part of Codecrypt. + * + * Codecrypt is free software: you can redistribute it and/or modify it + * under the terms of the GNU Lesser General Public License as published by + * the Free Software Foundation, either version 3 of the License, or (at + * your option) any later version. + * + * Codecrypt is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public + * License for more details. + * + * You should have received a copy of the GNU Lesser General Public License + * along with Codecrypt. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "codecrypt.h" + +using namespace ccr; +using namespace ccr::cfs_qd; + +#include "decoding.h" +#include "qd_utils.h" + +#include <set> + +int cfs_qd::generate (pubkey&pub, privkey&priv, prng&rng, + uint m, uint T, uint t, uint block_discard) +{ + priv.fld.create (m); + priv.T = T; + uint block_size = 1 << T; + if (t > block_size) return 2; + priv.t = t; + + //convenience + gf2m&fld = priv.fld; + std::vector<uint>&essence = priv.essence; + + std::vector<uint> support, Hsig; + polynomial g; + uint i, j; + + //prepare for data + Hsig.resize (fld.n); + support.resize (fld.n); + essence.resize (m + 1); + //note that q=2^m, algo. n=q/2, log n = m-1 + + //retry generating until goppa code is produced. + for (;;) { + + std::cout << "attempt" << std::endl; + + std::set<uint> used; + used.clear(); + + //first off, compute the H signature + + Hsig[0] = choose_random (fld.n, rng, used); + essence[m] = fld.inv (Hsig[0]); + //essence[m] is now used as precomputed 1/h_0 + + for (uint s = 0; s < m; ++s) { + i = 1 << s; //i = 2^s + + Hsig[i] = choose_random (fld.n, rng, used); + essence[s] = fld.add (essence[m], fld.inv (Hsig[i]) ); + used.insert (fld.inv (essence[s]) ); + + for (j = 1; j < i; ++j) { + uint hij = fld.inv + (fld.add + (fld.inv (Hsig[i]), + fld.add ( + fld.inv (Hsig[j]), + essence[m] + ) ) ); + if ( (!Hsig[i]) || (!Hsig[j]) ) hij = 0; + Hsig[i + j] = hij; + if (hij) { + used.insert (Hsig[i + j]); + /*used.insert (fld.inv + (fld.add + (fld.inv (Hsig[i + j]), + essence[m]) ) );*/ + } + } + } + + std::cout << "Gen Hsig: "; + for (i = 0; i < fld.n; ++i) std::cout << Hsig[i] << ' '; + std::cout << std::endl; + + //let's play with blocks. + uint block_size = 1 << T, + h_block_count = fld.n / block_size, + block_count = h_block_count - block_discard; + + //check if we have enough good blocks. + std::vector<bool> block_status; + uint badblocks; + block_status.resize (h_block_count); + + badblocks = 0; + for (i = 0; i < h_block_count; ++i) { + block_status[i] = true; + for (j = 0; j < block_size; ++j) + if (!Hsig[i * block_size + j]) { + block_status[i] = false; + break; + } + if (!block_status[i]) ++badblocks; + } + + std::cout << "badblocks: " << badblocks << std::endl; + + if (badblocks > block_discard) continue; //don't have enough good blocks + if (!block_status[0]) continue; //cannot assemble goppa poly + + std::cout << "lol contd." << std::endl; + + //reconstruct g + used.clear(); + g.clear(); + g.resize (1, 1); //g(x)=1 so we can multiply it + polynomial tmp; + tmp.resize (2, 1); //tmp(x)=x-1 + bool consistent = true; + for (i = 0; i < t; ++i) { + //tmp(x)=x-z=x-(1/h_i) where h_i is squared! + tmp[0] = fld.inv (Hsig[i]); + if (used.count (tmp[0]) ) { + consistent = false; + break; + } + used.insert (tmp[0]); + g.mult (tmp, fld); + } + if (!consistent) continue; //retry + + std::cout << "lol have g: " << g; + + //compute the support, retry if it has two equal elements. + for (i = 0; i < fld.n; ++i) { + if (!block_status[i / block_size]) continue; + support[i] = fld.add ( + fld.inv (Hsig[i]), + essence[m]); + + std::cout << "support " << i << " = " << support[i] << std::endl; + if (used.count (support[i]) ) { + std::cout << "support inconsistent at " << i << std::endl; + ++badblocks; + block_status[i / block_size] = false; + break; + } + + used.insert (support[i]); + } + + std::cout << "bad: " << badblocks << std::endl; + if (badblocks > block_discard) continue; + + //assemble blocks to bl + std::vector<polynomial> bl, blp; + bl.resize (h_block_count); + for (i = 0; i < h_block_count; ++i) { + bl[i].resize (block_size); + for (j = 0; j < block_size; ++j) + bl[i][j] = Hsig[i * block_size + j]; + } + + //permute the blocks. first move the damaged to discard area + priv.block_perm.generate_identity (h_block_count); + uint oks = h_block_count; + for (i = 0; i < oks; ++i) + if (!block_status[i]) { + std::cout << "removing one" << std::endl; + --oks; + priv.block_perm[i] = oks; + priv.block_perm[oks] = i; + //swap block statuses as well + bool tmp = block_status[i]; + block_status[i] = block_status[oks]; + block_status[oks] = tmp; + --i; + } + std::cout << "BLOCK " << priv.block_perm; + permutation rest_perm; + rest_perm.generate_random (oks, rng); + //permute the undamaged part of block_perm by hand TODO FIXME + //for (i = 0; i < oks; ++i) rest_perm[i] = priv.block_perm[rest_perm[i]]; + //for (i = 0; i < oks; ++i) priv.block_perm[i] = rest_perm[i]; + + //now we can safely permute and discard blocks + priv.block_perm.permute (bl, blp); + blp.resize (block_count); + + //permute individual blocks + priv.block_perms.resize (block_count); + bl.resize (blp.size() ); + for (i = 0; i < block_count; ++i) { + priv.block_perms[i] = rng.random (block_size); + permutation::permute_dyadic (priv.block_perms[i], + blp[i], bl[i]); + } + + //construct H + pub.qd_sigs.resize (fld.m); + bvector col; + bvector block; + for (i = 0; i < fld.m; ++i) + pub.qd_sigs[i].resize (block_count * block_size); + for (i = 0; i < block_count; ++i) { + col.from_poly_cotrace (bl[i], fld); + for (j = 0; j < fld.m; ++j) { + col.get_block (j * block_size, + block_size, block); + + pub.qd_sigs[j].set_block + (block, block_size * i); + } + } + + //finish the pubkey + pub.T = T; + pub.t = t; + + return 0; + } +} + +int privkey::prepare() +{ + uint s, i, j, k; + std::vector<uint> Hsig, support; + uint omega; + + uint block_count = block_perms.size(), + block_size = 1 << T; + + //compute H signature from essence + Hsig.resize (fld.n); + Hsig[0] = fld.inv (essence[fld.m]); + for (s = 0; s < fld.m; ++s) { + i = 1 << s; //i = 2^s + + Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m]) ); + + for (j = 1; j < i; ++j) + Hsig[i + j] = fld.inv + (fld.add + (fld.inv (Hsig[i]), + fld.add ( + fld.inv (Hsig[j]), + essence[fld.m] + ) ) ); + } + std::cout << "Gen Hsig: "; + for (i = 0; i < fld.n; ++i) std::cout << Hsig[i] << ' '; + std::cout << std::endl; + + + //goppa polynomial with omega=0 + std::set<uint> used; + used.clear(); + + polynomial tmp; + g.clear(); + g.resize (1, 1); //g(x)=1 + tmp.clear(); + tmp.resize (2, 1); //tmp(x)=x+1 + for (i = 0; i < t; ++i) { + tmp[0] = fld.inv (Hsig[i]); //tmp(x)=x+1/h_i + if (used.count (tmp[0]) ) + return 1; + std::cout << tmp[0] << std::endl; + used.insert (tmp[0]); + g.mult (tmp, fld); + } + + std::cout << "HERE 1" << std::endl; + //compute the support with omega=0 + support.resize (fld.n); + for (i = 0; i < fld.n; ++i) { + //don't compute with discarded support + if (block_perm[i / block_size] >= block_count) continue; + support[i] = fld.add + (fld.inv (Hsig[i]), + essence[fld.m]); + std::cout << "support " << i << " = " << support[i] << std::endl; + if (used.count (support[i]) ) //invalid support + return 1; + used.insert (support[i]); + } + + std::cout << "HERE LOLOLOLOLOL" << std::endl; + //choose omega + omega = fld.n; + for (i = 0; i < fld.n; ++i) + if (!used.count (i) ) { + omega = i; + break; + } + if (omega == fld.n) return 1; + + //modify support to omega-ized version + for (i = 0; i < support.size(); ++i) + support[i] = fld.add (support[i], omega); + + //modify g to omega-ized version + g.clear(); + tmp.clear(); + g.resize (1, 1); //g(x)=1 + tmp.resize (2, 1); //tmp(x)=x+1 + for (i = 0; i < t; ++i) { + tmp[0] = fld.add (fld.inv (Hsig[i]), omega); + g.mult (tmp, fld); + } + + g.compute_square_root_matrix (sqInv, fld); + + // prepare permuted support, from that prepare permuted check matrix + // (so that it can be applied directly) + uint pos; + std::vector<uint> sbl1, sbl2, permuted_support; + + sbl1.resize (block_size); + sbl2.resize (block_size); + permuted_support.resize (block_size * block_count); + + //permute support + for (i = 0; i < fld.n / block_size; ++i) { + pos = block_perm[i]; + if (pos >= block_count) continue; //was discarded + + //permute i-th block of support + for (j = 0; j < block_size; ++j) + sbl1[j] = support[j + i * block_size]; + + permutation::permute_dyadic (block_perms[pos], sbl1, sbl2); + + //store support to permuted support + for (j = 0; j < block_size; ++j) + permuted_support[j + pos * block_size] = sbl2[j]; + } + + //convert the permuted support to actual lookup + support_pos.clear(); + //fld.n in support lookup means that it isn't there (we don't have -1) + support_pos.resize (fld.n, fld.n); + for (i = 0; i < block_size * block_count; ++i) + support_pos[permuted_support[i]] = i; + + /* + * TODO move this to separate function + * + * prepare the matrix to compute decodable syndrome from QD matrix. From Barreto's slides: + * + * A is public check matrix + * H is private check matrix producing decodable syndromes + * + * H=SA for some S + * therefore if + * + * synd = A * codeword + * + * then + * + * S*synd = H*codeword + * + * and S = H * A^T * (A * A^T)^-1 + */ + + std::vector<std::vector<uint> > ma, mb, tmpa, tmph; + std::vector<uint> t1, t2; + + /* + * First, precompute the matrices A and H + */ + + tmpa.resize (t); + tmph.resize (t); + for (i = 0; i < t; ++i) { + tmpa[i].resize (fld.n); + tmph[i].resize (fld.n); + } + + for (i = 0; i < t; ++i) + permutation::permute_dyadic (i, Hsig, tmpa[i]); + + std::cout << "TMPA" << std::endl; + for (i = 0; i < t; ++i) { + for (j = 0; j < fld.n; ++j) std::cout << tmpa[i][j] << ' '; + std::cout << std::endl; + } + + + polynomial tmpcol; + for (i = 0; i < fld.n; ++i) { + tmpcol.resize (2); + tmpcol[0] = support[i]; + tmpcol[1] = 1; + tmpcol.inv (g, fld); + tmpcol.resize (t, 0); + for (j = 0; j < t; ++j) tmph[j][i] = tmpcol[j]; + } + + /* + * compute H * H^T to ma and A * H^T to mb. + */ + + ma.resize (t); + mb.resize (t); + for (i = 0; i < t; ++i) { + ma[i].resize (t, 0); + mb[i].resize (t, 0); + } + + for (i = 0; i < t; ++i) for (j = 0; j < t; ++j) { + for (k = 0; k < fld.n; ++k) { + ma[i][j] = fld.add (ma[i][j], fld.mult (tmph[i][k], tmph[j][k]) ); + mb[i][j] = fld.add (mb[i][j], fld.mult (tmpa[i][k], tmph[j][k]) ); + } + } + + std::cout << "MA" << std::endl; + for (i = 0; i < t; ++i) { + for (j = 0; j < t; ++j) std::cout << ma[i][j] << ' '; + std::cout << std::endl; + } + + std::cout << "MB" << std::endl; + for (i = 0; i < t; ++i) { + for (j = 0; j < t; ++j) std::cout << mb[i][j] << ' '; + std::cout << std::endl; + } + + /* + * now invert mb into ma as (mb|ma) to (I|ma*mb^-1) + * + * (result will be transposed, but that's actually good for our purpose) + */ + + uint x; + //gauss step + for (i = 0; i < t; ++i) { + //find pivot + for (j = i; j < t; ++j) if (mb[j][i] != 0) break; + if (j >= t) return 1; //no pivot -> not invertible + if (j > i) { + ma[j].swap (ma[i]); + mb[j].swap (mb[i]); + } + //normalize + x = fld.inv (mb[i][i]); + for (j = 0; j < t; ++j) { + ma[i][j] = fld.mult (ma[i][j], x); + mb[i][j] = fld.mult (mb[i][j], x); + } + //zero rows below + for (j = i + 1; j < t; ++j) { + x = mb[j][i]; + if (x == 0) continue; + for (k = 0; k < t; ++k) { + ma[j][k] = fld.add (ma[j][k], fld.mult (x, ma[i][k]) ); + mb[j][k] = fld.add (mb[j][k], fld.mult (x, mb[i][k]) ); + } + } + } + + //jordan step + std::cout << "jordan step..." << std::endl; + for (i = 0; i < t; ++i) { + for (j = i + 1; j < t; ++j) { + x = mb[t - j - 1][t - i - 1]; + if (x == 0) continue; + for (k = 0; k < t; ++k) { + ma[t - j - 1][k] = fld.add (ma[t - j - 1][k], fld.mult (x, ma[t - i - 1][k]) ); + mb[t - j - 1][k] = fld.add (mb[t - j - 1][k], fld.mult (x, mb[t - i - 1][k]) ); + } + } + } + + //result is now transposed in ma. + syndS.resize (t); + for (i = 0; i < t; ++i) { + syndS[i].resize (t); + for (j = 0; j < t; ++j) syndS[i][j] = ma[i][j]; + } + + std::cout << "SyndS is OKAY!" << std::endl; + + polynomial decsynd, loc; + for (i = 0; i < t; ++i) + decsynd.add_mult (syndS[i], Hsig[i], fld); + compute_goppa_error_locator (decsynd, fld, g, sqInv, loc); + std::cout << "TEST LOCATOR: " << loc; + + return 0; +} + +int privkey::sign (const bvector& hash, bvector&signature, + uint delta, uint attempts, prng&rng) +{ + if (hash.size() != hash_size() ) return 2; + + polynomial synd, decsynd, tmp, loc; + bvector ev, h2; + + uint i; + + for (uint att = 0; att < attempts; ++att) { + h2 = hash; + for (i = 0; i < delta; ++i) { + uint p = rng.random (h2.size() ); + h2[p] = !h2[p]; + } + + h2.to_poly_cotrace (synd, fld); + + std::cout << "SYND" << synd; + + decsynd.clear(); + for (i = 0; i < t; ++i) + decsynd.add_mult (syndS[i], synd[i], fld); + + std::cout << "SYND PREP" << decsynd; + + compute_goppa_error_locator (decsynd, fld, g, sqInv, loc); + if (!evaluate_error_locator_trace (loc, ev, fld) ) continue; + //we might have it! + std::cout << ev; + signature.clear(); + signature.resize (signature_size(), 0); + + for (i = 0; i < fld.n; ++i) if (ev[i]) { + uint epos = support_pos[i]; + if (epos == fld.n) break; //bad luck, undecodable + signature[epos] = 1; + } + if (i == fld.n) return 0; + } + return 1; //no attempts left. +} + +int pubkey::verify (const bvector&signature, const bvector&hash, uint delta) +{ + if (signature.size() != signature_size() ) return 2; + if (hash.size() != hash_size() ) return 2; + + uint i, j; + uint block_size = 1 << T; + bvector synd, b1, b2; + + synd.resize (t * qd_sigs.size(), 0); + //compute the syndrome + for (i = 0; i < signature_size(); ++i) { + if (!signature[i]) continue; + + //this is actually quite fast, as it happens only several times + for (j = 0; j < qd_sigs.size(); ++j) { + qd_sigs[j].get_block ( (i / block_size) *block_size, + block_size, b1); + permutation::permute_dyadic (i % block_size, b1, b2); + b2.resize (t); + synd.add_offset (b2, t * j); + } + } + + std::cout << "SYNDROME: " << synd; + synd.add (hash); + std::cout << "DIFF: " << synd; + if (synd.hamming_weight() > delta) return 1; + + return 0; +} diff --git a/lib/decoding.cpp b/lib/decoding.cpp index cd04824..c975a64 100644 --- a/lib/decoding.cpp +++ b/lib/decoding.cpp @@ -38,7 +38,7 @@ void compute_goppa_error_locator (polynomial&syndrome, gf2m&fld, v.sqrt (sqInv, fld); //v = sqrt((1/s)+x) mod goppa polynomial a, b; - v.ext_euclid (a, b, goppa, fld, goppa.degree()/2); + v.ext_euclid (a, b, goppa, fld, goppa.degree() / 2); a.square (fld); b.square (fld); diff --git a/lib/mce_qd.cpp b/lib/mce_qd.cpp index 95787ec..b697ff2 100644 --- a/lib/mce_qd.cpp +++ b/lib/mce_qd.cpp @@ -26,28 +26,6 @@ using namespace ccr::mce_qd; #include <set> -static uint sample_from_u (gf2m&fld, prng&rng, std::set<uint>&used) -{ - uint x; - for (;;) { - x = rng.random (fld.n); - if (used.count (x) ) continue; - used.insert (x); - return x; - } -} - -static uint choose_random (uint limit, prng&rng, std::set<uint>used) -{ - if (used.size() >= limit - 1) return 0; //die - for (;;) { - uint a = 1 + rng.random (limit - 1); - if (used.count (a) ) continue; - used.insert (a); - return a; - } -} - int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, uint m, uint T, uint block_discard) { @@ -61,6 +39,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, std::vector<uint> support, Hsig; polynomial g; + uint i, j; //prepare for data Hsig.resize (fld.n / 2); @@ -81,13 +60,13 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, //essence[m-1] is now used as precomputed 1/h_0 for (uint s = 0; s < m - 1; ++s) { - uint i = 1 << s; //i = 2^s + i = 1 << s; //i = 2^s Hsig[i] = choose_random (fld.n, rng, used); essence[s] = fld.add (essence[m - 1], fld.inv (Hsig[i]) ); used.insert (fld.inv (essence[s]) ); - for (uint j = 1; j < i; ++j) { + for (j = 1; j < i; ++j) { Hsig[i + j] = fld.inv (fld.add (fld.inv (Hsig[i]), @@ -111,7 +90,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, polynomial tmp; tmp.resize (2, 1); //tmp(x)=x-1 bool consistent = true; - for (uint i = 0; i < t; ++i) { + for (i = 0; i < t; ++i) { //tmp(x)=x-z=x-(1/h_i) tmp[0] = fld.inv (Hsig[i]); if (used.count (tmp[0]) ) { @@ -125,7 +104,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, if (!consistent) continue; //retry //compute the support, retry if it has two equal elements. - for (uint i = 0; i < fld.n / 2; ++i) { + for (i = 0; i < fld.n / 2; ++i) { support[i] = fld.add ( fld.inv (Hsig[i]), essence[m - 1]); @@ -154,9 +133,9 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, //assemble blocks to bl std::vector<polynomial> bl, blp; bl.resize (h_block_count); - for (uint i = 0; i < h_block_count; ++i) { + for (i = 0; i < h_block_count; ++i) { bl[i].resize (block_size); - for (uint j = 0; j < block_size; ++j) + for (j = 0; j < block_size; ++j) bl[i][j] = Hsig[i * block_size + j]; } @@ -170,7 +149,7 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, //permute individual blocks priv.block_perms.resize (block_count); bl.resize (blp.size() ); - for (uint i = 0; i < block_count; ++i) { + for (i = 0; i < block_count; ++i) { priv.block_perms[i] = rng.random (block_size); permutation::permute_dyadic (priv.block_perms[i], blp[i], bl[i]); @@ -186,7 +165,6 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, std::vector<std::vector<bvector> > hblocks; bvector col; - uint i, j; //prepare blocks of h hblocks.resize (block_count); @@ -206,10 +184,10 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, * If it fails, retry. */ if (!qd_to_right_echelon_form (hblocks) ) continue; - pub.qd_sigs.resize (block_count - fld.m); - for (uint i = 0; i < block_count - fld.m; ++i) { - pub.qd_sigs[i].resize (block_size * fld.m); - for (uint j = 0; j < fld.m; ++j) + pub.qd_sigs.resize2 (block_count - fld.m, + block_size * fld.m, 0); + for (i = 0; i < block_count - fld.m; ++i) { + for (j = 0; j < fld.m; ++j) pub.qd_sigs[i].set_block (hblocks[i][j], block_size * j); } @@ -233,6 +211,9 @@ int privkey::prepare() std::vector<uint> Hsig, support; uint omega; + uint block_size = 1 << T, + block_count = hperm.size(); + //compute H signature from essence Hsig.resize (fld.n / 2); Hsig[0] = fld.inv (essence[fld.m - 1]); @@ -271,6 +252,8 @@ int privkey::prepare() //compute the support with omega=0 support.resize (fld.n / 2); for (i = 0; i < fld.n / 2; ++i) { + //don't check discarded support + if (block_perm[i / block_size] >= block_count) continue; support[i] = fld.add (fld.inv (Hsig[i]), essence[fld.m - 1]); @@ -305,9 +288,7 @@ int privkey::prepare() // prepare permuted support, from that prepare permuted check matrix // (so that it can be applied directly) - uint block_size = 1 << T; uint pos, blk_perm; - uint block_count = hperm.size(); std::vector<uint> sbl1, sbl2, permuted_support; sbl1.resize (block_size); @@ -365,11 +346,11 @@ int pubkey::encrypt (const bvector & in, bvector & out, prng & rng) */ //some checks - if (!qd_sigs.size() ) return 1; - if (qd_sigs[0].size() % t) return 1; + if (!qd_sigs.width() ) return 1; + if (qd_sigs.height() % t) return 1; - uint blocks = qd_sigs[0].size() / t; - cksum.resize (qd_sigs[0].size(), 0); + uint blocks = qd_sigs.height() / t; + cksum.resize (qd_sigs.height(), 0); p.resize (t); g.resize (t); diff --git a/lib/qd_utils.cpp b/lib/qd_utils.cpp index 8ccb6b3..e4a75df 100644 --- a/lib/qd_utils.cpp +++ b/lib/qd_utils.cpp @@ -194,3 +194,15 @@ bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&mat) return true; } + +uint choose_random (uint limit, prng&rng, std::set<uint>&used) +{ + if (used.size() >= limit - 1) return 0; //die + for (;;) { + uint a = 1 + rng.random (limit - 1); + if (used.count (a) ) continue; + used.insert (a); + return a; + } +} + diff --git a/lib/qd_utils.h b/lib/qd_utils.h index 47c9319..cd79006 100644 --- a/lib/qd_utils.h +++ b/lib/qd_utils.h @@ -20,6 +20,7 @@ #define _qdutils_h_ #include "codecrypt.h" +#include <set> using namespace ccr; @@ -29,5 +30,8 @@ void fwht_dyadic_multiply (const bvector&, const bvector&, bvector&); //create a generator using fwht bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&matrix); +//disjunct random set selector. Doesn't select 0 (thus 0 is returned on failure) +uint choose_random (uint limit, prng&rng, std::set<uint>&used); + #endif diff --git a/lib/serialization.cpp b/lib/serialization.cpp index 311a7e0..394e563 100644 --- a/lib/serialization.cpp +++ b/lib/serialization.cpp @@ -3,6 +3,29 @@ using namespace ccr; +static sencode* serialize_uint_vector (std::vector<uint>*v) +{ + sencode_list*l = new sencode_list; + l->items.resize (v->size() ); + for (uint i = 0; i < v->size(); ++i) + l->items[i] = new sencode_int ( (*v) [i]); + return l; +} + +static bool unserialize_uint_vector (std::vector<uint>*v, sencode*s) +{ + sencode_list*l = dynamic_cast<sencode_list*> (s); + if (!l) return false; + v->clear(); + v->resize (l->items.size() ); + for (uint i = 0; i < v->size(); ++i) { + sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]); + if (!x) return false; + (*v) [i] = x->i; + } + return true; +} + sencode* bvector::serialize() { uint ss = (size() + 7) / 8; @@ -68,25 +91,16 @@ bool matrix::unserialize (sencode* s) sencode* permutation::serialize() { - sencode_list*l = new sencode_list; - l->items.resize (size() ); - for (uint i = 0; i < size(); ++i) - l->items[i] = new sencode_int (item (i) ); - return l; + return serialize_uint_vector (this); } bool permutation::unserialize (sencode* s) { - sencode_list*l = dynamic_cast<sencode_list*> (s); - if (!l) return false; - clear(); - resize (l->items.size() ); - for (uint i = 0; i < size(); ++i) { - sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]); - if (!x) return false; - if (x->i >= size() ) return false; //small sanity check - item (i) = x->i; - } + if (!unserialize_uint_vector (this, s) ) return false; + + //small sanity check + for (uint i = 0; i < size(); ++i) if (item (i) >= size() ) return false; + return true; } @@ -104,25 +118,12 @@ bool gf2m::unserialize (sencode* s) sencode* polynomial::serialize() { - sencode_list*l = new sencode_list; - l->items.resize (size() ); - for (uint i = 0; i < size(); ++i) - l->items[i] = new sencode_int (item (i) ); - return l; + return serialize_uint_vector (this); } bool polynomial::unserialize (sencode* s) { - sencode_list*l = dynamic_cast<sencode_list*> (s); - if (!l) return false; - clear(); - resize (l->items.size() ); - for (uint i = 0; i < size(); ++i) { - sencode_int*x = dynamic_cast<sencode_int*> (l->items[i]); - if (!x) return false; - item (i) = x->i; - } - return true; + return unserialize_uint_vector (this, s); } sencode* mce::privkey::serialize() @@ -227,22 +228,58 @@ bool nd::pubkey::unserialize (sencode* s) sencode* mce_qd::privkey::serialize() { - + sencode_list*l = new sencode_list; + l->items.resize (6); + l->items[0] = fld.serialize(); + l->items[1] = new sencode_int (T); + l->items[2] = serialize_uint_vector (&essence); + l->items[3] = block_perm.serialize(); + l->items[4] = serialize_uint_vector (&block_perms); + l->items[5] = hperm.serialize(); + return l; } bool mce_qd::privkey::unserialize (sencode* s) { + sencode_list*l = dynamic_cast<sencode_list*> (s); + if (!l) return false; + if (l->items.size() != 6) return false; + sencode_int*p = dynamic_cast<sencode_int*> (l->items[1]); + if (!p) return false; + T = p->i; + + if (! (fld.unserialize (l->items[0]) && + unserialize_uint_vector (&essence, l->items[2]) && + block_perm.unserialize (l->items[3]) && + unserialize_uint_vector (&block_perms, l->items[4]) && + hperm.unserialize (l->items[5]) ) ) return false; + + return true; } sencode* mce_qd::pubkey::serialize() { - + sencode_list*l = new sencode_list; + l->items.resize (2); + l->items[0] = new sencode_int (T); + l->items[1] = qd_sigs.serialize(); + return l; } bool mce_qd::pubkey::unserialize (sencode* s) { + sencode_list*l = dynamic_cast<sencode_list*> (s); + if (!l) return false; + if (l->items.size() != 2) return false; + sencode_int*p = dynamic_cast<sencode_int*> (l->items[0]); + if (!p) return false; + T = p->i; + + if (!qd_sigs.unserialize (l->items[1]) ) return false; + + return true; } sencode* cfs_qd::privkey::serialize()