slight cleaning

This commit is contained in:
Mirek Kratochvil 2012-11-06 09:46:18 +01:00
parent 8a4cebe729
commit fc209d3345
6 changed files with 219 additions and 216 deletions

View file

@ -409,8 +409,6 @@ public:
gf2m fld; //we fix q=2^fld.m=fld.n, n=q/2
uint T; //the QD's t parameter is 2^T.
permutation block_perm; //order of blocks
//TODO block_count is (easily) derivable from hperm.
uint block_count; //blocks >= block_count are shortened-out
permutation hperm; //block permutation of H block used to get G
std::vector<uint> block_perms; //dyadic permutations of blocks

View file

@ -1,74 +0,0 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#include "fwht.h"
#include <vector>
using namespace std;
/*
* we count on that all integers are sufficiently large.
* They should be, largest value occuring should be O(k*n) if initial vector is
* consisted only from {0,1}^n, and we don't usually have codes of this size.
*/
static void fwht (vector<int> x, vector<int>&r)
{
int bs, s;
s = x.size();
r.resize (s);
bs = s >> 1;
r.swap (x);
while (bs) {
x.swap (r);
for (uint i = 0; i < s; ++i) {
if ( (i / bs) & 1)
r[i] = x[i - bs] - x[i];
else
r[i] = x[i] + x[i + bs];
}
bs >>= 1;
}
}
//we expect correct parameter size and preallocated out.
void fwht_dyadic_multiply (const bvector& a, const bvector& b, bvector& out)
{
//lift everyting to Z.
vector<int> t, A, B;
uint i;
t.resize (a.size() );
A.resize (a.size() );
B.resize (a.size() );
for (i = 0; i < a.size(); ++i) t[i] = a[i];
fwht (t, A);
for (i = 0; i < b.size(); ++i) t[i] = b[i];
fwht (t, B);
//multiply diagonals to A
for (i = 0; i < A.size(); ++i) A[i] *= B[i];
fwht (A, t);
uint bitpos = a.size(); //no problem as a.size() == 1<<m == 2^m
for (i = 0; i < t.size(); ++i) out[i] = (t[i] & bitpos) ? 1 : 0;
}

View file

@ -22,7 +22,7 @@ using namespace ccr;
using namespace ccr::mce_qd;
#include "decoding.h"
#include "fwht.h"
#include "qd_utils.h"
#include <set>
@ -57,9 +57,9 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
//convenience
gf2m&fld = priv.fld;
std::vector<uint>&Hsig = priv.Hsig;
std::vector<uint>&essence = priv.essence;
std::vector<uint>&support = priv.support;
std::vector<uint> support, Hsig;
polynomial g;
//prepare for data
@ -148,9 +148,8 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
//now the blocks.
uint block_size = 1 << T,
h_block_count = (fld.n / 2) / block_size;
uint& block_count = priv.block_count;
block_count = h_block_count - block_discard;
h_block_count = (fld.n / 2) / block_size,
block_count = h_block_count - block_discard;
//assemble blocks to bl
std::vector<polynomial> bl, blp;
@ -181,50 +180,13 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
uint attempts = 0;
for (attempts = 0; attempts < block_count; ++attempts) {
/*
* try computing the redundancy block of G
*
* First, co-trace H, then compute G in form
*
* G^T = [I | X]
*
* Since H*G^T = [L | R] * [I | X] = L + R*X = 0
* we have the solution: X = R^1 * L
* (thanks to Rafael Misoczki)
*
* Inversion is done the quasi-dyadic way:
*
* - because for QD matrix m=delta(h) the product
* m*m = sum(h) * I, binary QD matrix m is either
* inversion of itself (m*m=I) or isn't invertible
* and m*m=0. sum(h), the "count of ones in QD
* signature mod 2", easily determines the result.
*
* - Using blockwise invertions/multiplications,
* gaussian elimination needed to invert the right
* square of H can be performed in O(m^2*block_count)
* matrix operations. Matrix operations are either
* addition (O(t) on QDs), multiplication(O(t log t)
* on QDs) or inversion (O(t), as shown above).
* Whole proces is therefore quite fast.
*
* Gaussian elimination on the QD signature should
* result in something like this: (for m=3, t=4)
*
* 1010 0101 1001 1000 0000 0000
* 0101 1100 1110 0000 1000 0000
* 0111 1110 0100 0000 0000 1000
*/
priv.hperm.generate_random (block_count, rng);
permutation hpermInv;
priv.hperm.compute_inversion (hpermInv);
std::vector<std::vector<bvector> > hblocks;
bvector tmp;
bool failed;
uint i, j, k, l;
bvector col;
uint i, j;
//prepare blocks of h
hblocks.resize (block_count);
@ -233,102 +195,16 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
//fill them from Hsig
for (i = 0; i < block_count; ++i) {
tmp.from_poly_cotrace (bl[hpermInv[i]], fld);
col.from_poly_cotrace (bl[hpermInv[i]], fld);
for (j = 0; j < fld.m; ++j)
tmp.get_block (j * block_size,
col.get_block (j * block_size,
block_size,
hblocks[i][j]);
}
/* do a modified QD-blockwise gaussian elimination on hblocks */
failed = false;
tmp.resize (block_size);
for (i = 0; i < fld.m; ++i) { //gauss step
//first, find a nonsingular matrix in the column
for (j = i; j < fld.m; ++j)
if (hblocks[block_count - fld.m + i][j]
.hamming_weight() % 2) break;
if (j >= fld.m) { //none found, break;
failed = true;
break;
}
//bring it to correct position (swap it to i-th row)
if (j > i) for (k = 0; k < block_count; ++k)
hblocks[k][i].swap
(hblocks[k][j]);
//now normalize the row
for (j = i; j < fld.m; ++j) {
l = hblocks [block_count - fld.m + i]
[j].hamming_weight();
if (l == 0) continue; //zero is just okay :]
if (! (l % 2) ) //singular, make it regular by adding the i-th row
for (k = 0;
k < block_count;
++k)
hblocks[k][j].add
(hblocks[k][i]);
//now a matrix is regular, we can easily make it I.
//first, multiply the row
for (k = 0; k < block_count; ++k) {
//don't overwrite the matrix we're counting with
if (k == block_count - fld.m + i) continue;
fwht_dyadic_multiply
(hblocks[block_count - fld.m + i][j],
hblocks[k][j], tmp);
hblocks[k][j] = tmp;
}
//change the block on the diagonal
fwht_dyadic_multiply
(hblocks[block_count - fld.m + i][j],
hblocks[block_count - fld.m + i][j], tmp);
hblocks[block_count - fld.m + i][j] = tmp;
//and zero the column below diagonal
if (j > i) for (k = 0; k < block_count; ++k)
hblocks[k][j].add
(hblocks[k][i]);
}
}
if (failed) continue;
for (i = 0; i < fld.m; ++i) { //jordan step
//normalize diagonal
for (k = 0; k < block_count - i; ++k) {
//we can safely rewrite the diagonal here (nothing's behind it)
fwht_dyadic_multiply
(hblocks[block_count - i - 1][fld.m - i - 1],
hblocks[k][fld.m - i - 1], tmp);
hblocks[k][fld.m - i - 1] = tmp;
}
//now make zeroes above
for (j = i + 1; j < fld.m; ++j) {
l = hblocks[block_count - i - 1]
[fld.m - j - 1].hamming_weight();
if (l == 0) continue; //already zero
if (! (l % 2) ) { //nonsingular, fix it by adding diagonal
for (k = 0; k < block_count; ++k)
hblocks[k][fld.m - j - 1].add
(hblocks[k][fld.m - i - 1]);
}
for (k = 0; k < block_count - i; ++k) {
//overwrite is also safe here
fwht_dyadic_multiply
(hblocks[block_count - i - 1]
[fld.m - j - 1],
hblocks[k][fld.m - j - 1], tmp);
hblocks[k][fld.m - j - 1] = tmp;
}
//I+I=0
for (k = 0; k < block_count; ++k)
hblocks[k][fld.m - j - 1].add
(hblocks[k][fld.m - i - 1]);
}
}
/* do a modified QD-blockwise gaussian elimination on hblocks.
* If it fails, retry. */
if (!qd_to_right_echelon_form (hblocks) ) continue;
pub.qd_sigs.resize (block_count - fld.m);
for (uint i = 0; i < block_count - fld.m; ++i) {
@ -354,6 +230,9 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
int privkey::prepare()
{
uint s, i, j;
std::vector<uint> Hsig, support;
uint omega;
//compute H signature from essence
Hsig.resize (fld.n / 2);
Hsig[0] = fld.inv (essence[fld.m - 1]);
@ -428,6 +307,7 @@ int privkey::prepare()
// (so that it can be applied directly)
uint block_size = 1 << T;
uint pos, blk_perm;
uint block_count = hperm.size();
std::vector<uint> sbl1, sbl2, permuted_support;
sbl1.resize (block_size);

196
lib/qd_utils.cpp Normal file
View file

@ -0,0 +1,196 @@
/*
* This file is part of Codecrypt.
*
* Codecrypt is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qd_utils.h"
#include <vector>
using namespace std;
/*
* we count on that all integers are sufficiently large.
* They should be, largest value occuring should be O(k*n) if initial vector is
* consisted only from {0,1}^n, and we don't usually have codes of this size.
*/
static void fwht (vector<int> x, vector<int>&r)
{
int bs, s;
s = x.size();
r.resize (s);
bs = s >> 1;
r.swap (x);
while (bs) {
x.swap (r);
for (uint i = 0; i < s; ++i) {
if ( (i / bs) & 1)
r[i] = x[i - bs] - x[i];
else
r[i] = x[i] + x[i + bs];
}
bs >>= 1;
}
}
//we expect correct parameter size and preallocated out.
void fwht_dyadic_multiply (const bvector& a, const bvector& b, bvector& out)
{
//lift everyting to Z.
vector<int> t, A, B;
uint i;
t.resize (a.size() );
A.resize (a.size() );
B.resize (a.size() );
for (i = 0; i < a.size(); ++i) t[i] = a[i];
fwht (t, A);
for (i = 0; i < b.size(); ++i) t[i] = b[i];
fwht (t, B);
//multiply diagonals to A
for (i = 0; i < A.size(); ++i) A[i] *= B[i];
fwht (A, t);
uint bitpos = a.size(); //no problem as a.size() == 1<<m == 2^m
for (i = 0; i < t.size(); ++i) out[i] = (t[i] & bitpos) ? 1 : 0;
}
bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&mat)
{
uint w = mat.size();
if (!w) return false;
uint h = mat[0].size();
if (!h) return false;
uint bs = mat[0][0].size();
uint i, j, k, l;
/*
* Inversion is done the quasi-dyadic way:
*
* - because for QD matrix m=delta(h) the product
* m*m = sum(h) * I, binary QD matrix m is either
* inversion of itself (m*m=I) or isn't invertible
* and m*m=0. sum(h), the "count of ones in QD
* signature mod 2", easily determines the result.
*
* - Using blockwise invertions/multiplications,
* gaussian elimination needed to invert the right
* square of H can be performed in O(m^2*block_count)
* matrix operations. Matrix operations are either
* addition (O(t) on QDs), multiplication(O(t log t)
* on QDs) or inversion (O(t), as shown above).
* Whole proces is therefore quite fast.
*
* Gaussian elimination on the QD signature should
* result in something like this: (for m=3, t=4)
*
* 1010 0101 1001 1000 0000 0000
* 0101 1100 1110 0000 1000 0000
* 0111 1110 0100 0000 0000 1000
*/
bvector tmp;
tmp.resize (bs);
for (i = 0; i < h; ++i) { //gauss step
//first, find a nonsingular matrix in the column
for (j = i; j < h; ++j)
if (mat[w - h + i][j]
.hamming_weight() % 2) break;
if (j >= h) //none found, die!
return false;
//bring it to correct position (swap it to i-th row)
if (j > i) for (k = 0; k < w; ++k)
mat[k][i].swap
(mat[k][j]);
//now normalize the row
for (j = i; j < h; ++j) {
l = mat [w - h + i]
[j].hamming_weight();
if (l == 0) continue; //zero is just okay :]
if (! (l % 2) ) //singular, make it regular by adding the i-th row
for (k = 0;
k < w;
++k)
mat[k][j].add
(mat[k][i]);
//now a matrix is regular, we can easily make it I.
//first, multiply the row
for (k = 0; k < w; ++k) {
//don't overwrite the matrix we're counting with
if (k == w - h + i) continue;
fwht_dyadic_multiply
(mat[w - h + i][j],
mat[k][j], tmp);
mat[k][j] = tmp;
}
//change the block on the diagonal
fwht_dyadic_multiply
(mat[w - h + i][j],
mat[w - h + i][j], tmp);
mat[w - h + i][j] = tmp;
//and zero the column below diagonal
if (j > i) for (k = 0; k < w; ++k)
mat[k][j].add
(mat[k][i]);
}
}
for (i = 0; i < h; ++i) { //jordan step
//normalize diagonal
for (k = 0; k < w - i; ++k) {
//we can safely rewrite the diagonal here (nothing's behind it)
fwht_dyadic_multiply
(mat[w - i - 1][h - i - 1],
mat[k][h - i - 1], tmp);
mat[k][h - i - 1] = tmp;
}
//now make zeroes above
for (j = i + 1; j < h; ++j) {
l = mat[w - i - 1]
[h - j - 1].hamming_weight();
if (l == 0) continue; //already zero
if (! (l % 2) ) { //nonsingular, fix it by adding diagonal
for (k = 0; k < w; ++k)
mat[k][h - j - 1].add
(mat[k][h - i - 1]);
}
for (k = 0; k < w - i; ++k) {
//overwrite is also safe here
fwht_dyadic_multiply
(mat[w - i - 1]
[h - j - 1],
mat[k][h - j - 1], tmp);
mat[k][h - j - 1] = tmp;
}
//I+I=0
for (k = 0; k < w; ++k)
mat[k][h - j - 1].add
(mat[k][h - i - 1]);
}
}
return true;
}

View file

@ -16,15 +16,18 @@
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _fwht_h_
#define _fwht_h_
#ifndef _qdutils_h_
#define _qdutils_h_
#include "codecrypt.h"
using namespace ccr;
//parameters MUST be of 2^m size.
//FWHT matrix mult in O(n log n). parameters MUST be of 2^m size.
void fwht_dyadic_multiply (const bvector&, const bvector&, bvector&);
//create a generator using fwht
bool qd_to_right_echelon_form (std::vector<std::vector<bvector> >&matrix);
#endif

View file

@ -44,7 +44,7 @@ int main()
ccr::mce_qd::privkey priv;
ccr::mce_qd::pubkey pub;
ccr::mce_qd::generate (pub, priv, r, 11, 5, 2);
ccr::mce_qd::generate (pub, priv, r, 14, 8, 2);
cout << "cipher size: " << priv.cipher_size() << ' ' << pub.cipher_size() << endl;
cout << "plain size: " << priv.plain_size() << ' ' << pub.plain_size() << endl;