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Abstract

This paper builds on the multi-time signature scheme proposed by Merkle. We prove that the original
scheme is existentially unforgeable under adaptive chosen message attack. Moreover, we present an
improved version which has three advantages: It is provably forward secure. The number of signatures
that can be made with one private key is — in a practical sense — unlimited. Finally, the cost for key
generation is kept low.

The theoretical exposition is complemented by experimental data about the efficiency of the improved
Merkle signature scheme.

Keywords: Merkle Signature Scheme, Forward Security, Provably secure, Lamport-Diffie one-time Sig-
nature Scheme.

1 Introduction

Merkle presents in [Mer90] a multi-time signature scheme which employs a version of the Lamport-Diffie one-
time signature scheme. Actually, the Merkle signature scheme transforms any one-time signature scheme in
a multi-time one. Merkle did not give any proof of the security of his signature scheme.

The idea of the Merkle signature scheme is the following: Assume that we want to be able to make
2N signatures. Key generation works as follows: Generate 2N key pairs of the one-time signature scheme.
Then, create a binary tree whose leaves are the hash values of the verification keys, and each parent is the
hash value of the concatenation of its left and right children. The public value is the root of the tree. All
the one-time key pairs taken together serve as the private key. The signature of message number k is the
one-time signature with the k-th private one-time key, followed by the one-time verification key and N nodes
from the tree which help to authenticate the verification key against the public value.

1.1 Our contribution

A proof of security. We show that assuming the existence of cryptographically secure hash functions
and cryptographically secure one-time signature schemes, the Merkle signature scheme is not existentially
forgeable under adaptive chosen message attack. To do this, we prove first that any alteration of any
number of nodes of a Merkle tree that keeps the root intact yields an explicit collision for the underlying
hash function. Then, we show that any existential forgery of signatures in the Merkle signature scheme leads
to either an existential forgery of signatures for the underlying one-time signature scheme or a collision for
the underlying hash function.

A forward secure version of the Merkle Signature Scheme. Roughly speaking, a forward secure
signature scheme is one for which the validity of a public key is divided into periods, and the corresponding
private key “evolves” after each period in such a way that if the private key is compromised by an adversary
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in some period, the adversary cannot succeed in forging a signature for a previous period. We modify the
original Merkle scheme in order to transform it into a forward secure one. Note that if all the one-time
signing keys are stored and each one of them is deleted after its use, the resulting Merkle signature scheme is
forward secure, where each period consist of exactly one signature. In this case, the private key of the Merkle
signature scheme is as big as the stored one-time signing keys. In our version, the size of the private key
is reduced by employing a pseudorandom bit generator and a one-time signature scheme with deterministic
key-generation. Bellare and Yee have shown in [BY03] how to construct a forward-secure pseudorandom
bit generator from a cryptographically secure pseudorandom bit generator. The use of that bit generator
enables us to prove that our new version of the Merkle signature scheme becomes forward secure.

Key generation process split through the signature process. In the Merkle signature scheme, the
number of possible signatures is 2N , where N is the depth of the Merkle tree. The bigger the parameter
N is, the slower the key generation process becomes: during key generation 2N+1 − 1 hash values and 2N

one-time key pairs have to be computed.
We present a version where part of the key generation takes place during the use of the signature scheme.

This permits the use of sufficiently large parameters to allow for a practically unlimited number of signatures
while keeping the cost of the initial key generation process low. The basic idea is to use one (“top”) Merkle
tree to authenticate the roots of a series of other, “bottom” trees. Only one of the bottom trees is kept
at a time. During the use of one bottom tree, the next one is generated, namely two nodes at a time per
signature.

1.2 Previous work

Merkle presents in [Mer90] his multi-time signature scheme. In that work, he improves the Lamport-Diffie
one-time signature scheme [DH76], whose security hinges on that of the used hash function, and introduces
his multi-time extension based on a binary tree, which we will call Merkle tree henceforth. No formal proof of
the security of the scheme has been given, although its properties are widely known. See e.g. Micali [Mic00]
who mentions, without proof, that the crucial property of Merkle trees is the difficulty of changing any node
in the tree while keeping the root unaltered, provided that the used hash function is collision resistant.

1.3 Outline of the paper

We give a description of the Merkle signature scheme and discuss its security in Section 2. Then, in Section
3, we present our improved version and discuss its security. Finally, in section 4, we give some measurements
of the performance of the scheme and extrapolate the collected data to obtain a full picture of the efficiency
of our improved version.

For the convenience of the reader we attach two Appendices. The first contains the proofs of some
auxiliary statements from Section 2. In the second, we recall the Diffie-Lamport one-time signature scheme.

1.4 Notation

A signature scheme is given as a triple (Gen, Sig, V er) of probabilistic polynomial-time algorithms. A one-
time signature scheme is, roughly speaking, a signature scheme which is guaranteed to be secure as long as
each private key is not used more than once. In our context private keys of signature schemes will also be
called signing keys, the public ones verifying keys.

Informally, we say that a scheme has (t, ε)-property P if no Adversary A, modeled as a probabilistic
algorithm which runs within time t, succeeds with probability larger than ε in breaking property P. Here,
we adopt the convention that the time-complexity is the total worst-case execution time of A plus the size
of its code, all measured in some fixed model of computation.

The following notion will be needed for the description of the Merkle signature scheme. Assume we are
given a rooted full binary tree of depth N . Let us label the leaves of the tree from 0 to 2N − 1. We call
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Figure 1: Example of an i-labeled sibling path for N = 3 which is depicted in �. The path of the leaf i is
pictured in ♦.

(PN , . . . , P1) the i-labeled sibling path for the leaf L if L is the leaf of the tree with label i and, for 1 ≤ j ≤ N ,
Pj is the sibling of the node of the path from the root to L at depth j. The term is illustrated in Figure 1.

2 Efficiency and security of the Merkle signature scheme

In this Section we give a formal description of the Merkle signature scheme. Let 1Sign = (1Gen, 1Sig, 1V er)
be a one-time signature scheme, and let H : {0, 1}m → {0, 1}s be a hash function.
Key generator algorithm Gen. On input N ∈ N and security parameter s, Gen calls 2N times 1Gen(s)
in order to obtain the key pairs (Xi, Yi) for 0 ≤ i < 2N . Then it computes recursively the nodes of the tree:
KN,i = H(Yi) and Kj,kj = H(Kj+1,2kj ,Kj+1,2kj+1) for 0 ≤ i < 2N , 0 ≤ j < N and 0 ≤ kj < 2j . Finally, it
sets R = K0,0.

The public key output by Gen is (N,R). The private key consists of a concatenation of the key pairs
(Xi, Yi). (In case the one-time verifying keys Yi can be computed from the Xi, it is sufficient to store only the
one-time signing keys Xi.) The user must keep a counter which contains the number of previously created
signatures. In the beginning, the counter is set to zero.
Signature algorithm Sig. Let i be the counter. On input of a message M and the secret key, Sig calls
1Sig(M,Xi) in order to obtain the one-time signature τ and computes (PN , . . . , P1), the i-labeled sibling
path for the leaf H(Yi).

Finally, Sig outputs the signature σ = (i, τ, Yi, PN , . . . , P1), and then increments the counter i by one.
Verification algorithm V er. On input a message M , a signature σ′ = (i, τ ′, Y ′, P ′

N , . . . , P ′
1) and a public

key (N,R), V er accepts the signature σ′ unless 1V er(M, τ ′, Y ′) = false or W0 6= R, where WN = H(Y ′)
and Wj−1 := H(lj , rj) for (0 < j ≤ N), where lj := Wj , rj := Pj in case that

⌊
i

2N−j

⌋
is even or lj := Pj ,

rj := Wj otherwise.

2.1 Security

Goldwasser et al. [GMR88] introduced the concepts of existentially forgeable and adaptive chosen message
attack. We adopt concepts from [BMS03, EGM96] and [RS04] for existentially unforgeable under adaptive
chosen message attack, one-time signature schemes and collision-resistant functions respectively. The main
result of this Section is the Proposition 1. The lemma 1 proofs the important property of the Merkle trees
when an i-labeled sibling path becomes an i-labeled authentication path in a Merkle tree.

Here we give the notion of an authentication path. Let H : {0, 1}m → {0, 1}s be a function, where m = ∗
or m ≥ 2s, let N ∈ N and let L,PN , . . . , P1, R ∈ {0, 1}s. Set 0 ≤ i < 2N . We say that (PN , . . . , P1) is an
i-labeled authentication path of depth N for the leaf L with respect to the root R if R = W0, where WN := L
and Wj−1 := H(lj , rj) for (0 < j ≤ N) and lj := Wj , rj := Pj in case that

⌊
i

2N−j

⌋
is even or lj := Pj ,
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rj := Wj in the other case. Here H(x, y) denote H(x‖y) if m = ∗ and denote H(x‖y‖0m−2s) in the other
case, where ‖ is the concatenation of strings.

Lemma 1 Let H be a hash function, which image is in {0, 1}s. Let R ∈ {0, 1}s and let N ∈ N. Set
0 ≤ i < 2N . If A = (PN , PN−1, . . . , P1) is an i-labeled authentication path of depth N for a leaf L and
B = (P ′

N , P ′
N−1, . . . , P

′
1) is an i-labeled authentication path of depth N for a leaf L′ both of them with respect

to the root R, then either A 6= B or L 6= L′ implies an explicit collision for H.

Proof
We define WN := L and Wj−1 := H(lj , rj) for 0 < j ≤ N , where lj = Wj and rj = Pj in case of b i

2N−j c
is even and lj = Pj and rj = Wj in the other case. In an analogous way we define W ′

j for 0 ≤ j ≤ N .
If A 6= B, set k := min1≤j≤N{Pj 6= P ′

j}. We know that W0 = W ′
0 = R, so if there exists 0 ≤ j0 < k

such that Wj0 6= W ′
j0

and Wj = W ′
j for 0 ≤ j < j0 then H(l, r) = Wj0−1 = W ′

j0−1 = H(l′, r′), where
l = Wj0 , r = Pj0 , l

′ = W ′
j0

, r′ = P ′
j0

in case of b i
2N−j0 c is even and l = Pj0 , r = Wj0 , l

′ = P ′
j0

, r′ = W ′
j0

in
the other case. And then (l, r) 6= (l′, r′) but H(l, r) = H(l′, r′). Now we have that Wk−1 = W ′

k−1 and then
H(l, r) = Wk−1 = W ′

k−1 = H(l′, r′), where l = Wk, r = Pk, l′ = W ′
k, r′ = P ′

k in case of b i
2N−k c is even and

l = Pk, r = Wk, l′ = P ′
k, r′ = W ′

k in the other case, what implies that (l, r) 6= (l′, r′) but H(l, r) = H(l′, r′).
If A = B and L 6= L′, then we can assume that WN−1 = WN ′−1 (because of W0 = W ′

0 if there exists
1 ≤ j0 < N such that Wj = W ′

j for 0 ≤ j < j0 and Wj0 6= W ′
j0

then we proceed in a similar way as in
the case A 6= B in order to find a collision for H) and so H(l, r) = WN−1 = WN ′−1 = H(l′, r′), where
l := L, r := PN , l′ := L′, r′ := P ′

N in case that i is even or l := PN , r := L, l′ := P ′
N , r′ := L′ in the other

case, but (l, r) 6= (l′, r′). �

Proposition 1 Security of the Merkle signature scheme. Let H be a (tcr, εcr) collision resistant hash
function and let 1Sign be a (t1s, ε1s) one-time signature scheme, such that εcr ≤ 1

2 , tcr ≥ t + (N + 1)th +
2N ts + tg and t1s ≥ t + 2N ts + tg for some t and some N < b− log2 ε1sc, where th is the time needed to
compute a hash value, ts is the time needed to compute a one-time signature and tg is the time needed to
generate a key pair for the Merkle signature scheme. Let ε = 2 max{εcr, 2N ε1s}, then the Merkle signature
scheme Sign is (t, ε, 2N ) existentially unforgeable under adaptive chosen message attack.

Proof
Suppose that the Merkle signature scheme can be existentially broken via a 2N message attack in time t

and probability ε. Then we prove that at least one of the following holds:

� A collision can be found for the underlying hash function with probability at least εcr and within time
tcr.

� The underlying one-time signature scheme can be existentially broken with probability at least ε1s and
within time t1s.

Suppose that a forger F = {F1,F2} exists such that

Pr[V er(M,σ′, PK) = 1 : (SK, PK)← Gen(s,N);T ← FSig(·,SK)
1 (s); (M,σ′)← F2(T )] ≥ ε

in time t.
We construct at the same time two algorithms, A = {A1,A2} which try to forge a one-time signature

and B which tries to find a collision.
B begins getting (Pr, Pu) ← 1Gen(s) a pair of one-time signature keys. A1 chooses 0 ≤ i0 < 2N at

random and sets Yi0 := Pu. Now for 0 ≤ i < 2N with i 6= i0, A1 obtains (Xi, Yi)← 1Gen(s) and completes
the generation process for the Merkle signature scheme. Let R be the Merkle tree’s root. This resulting
generated Merkle key is taken by B. A1 calls F1 and uses 1Sig(·, P r) at most once as an oracle, just in case
F1 needs to compute the (i0 + 1)-th signature. Note that B knows Pr, so it does not use any oracle to sign
with that key. A1 outputs T , where T is the output of F1. B retains the number of messages k and the
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messages Mj for 0 ≤ j < k used by F1. On input T , A2 calls F2 with T as input and obtains (M,σ′), a
forged signature σ′ of a message M . Let σ′ = (i, τ ′, Y ′, P ′

N , . . . , P ′
1) be the forged signature for the message

M , A2 outputs (τ ′,M). At this point, algorithm A has concluded its running time, while B continues. Let
σ = (i, τ, Yi, PN , . . . , P1) be an authentic signature for the message Mi, where Mi = M if i = k and Mi 6= M
if i < k. B sets A = (P ′

N , . . . , P ′
1) and B = (PN , . . . , P1). By hypothesis A is an i-labeled authentication path

for the leaf H(Y ′) and B is an i-labeled authentication path for the leaf H(Yi) both of them with respect
to the root R. If either A 6= B or Y ′ 6= Yi then B outputs either the collision which is found by Lemma 1 or
(Y ′, Yi) (note that Y ′ 6= Yi and H(Y ′) = H(Yi) implies a collision). In other case, B outputs (1, 0).

Let ℘ be the probability that (Y ′, A) obtained by F and (Y, B) obtained by the signature algorithm are
different. If ℘ ≥ 1

2 then B finds a collision for H within time tcr with probability at least ε
2 ≥ εcr. Else

with probability 1
2N , the forged signature output by F satisfies that i = i0. Hence, the attack by A on the

one-time signature scheme succeeds with probability at least 1
2

ε
2N ≥ ε1s within time t1s. �

2.2 Efficiency

Let lsec be the maximal size of a one-time signing key, let lver be the maximal size of the corresponding
one-time verification key, let lsig be the maximal size of the corresponding one-time signature and let lint

be the number of bits needed to store the counter. Merkle suggested in his work an improved version of
the Lamport-Diffie one-time signature. In Appendix B that one-time signature scheme is described. Using
the Lamport-Diffie one-time signature scheme improved by Merkle we have lsec = lver = s(s + 1 + blog2 sc),
lsig = s2, and for N = 14, s = 160 and lint = 32 we have that the private key size ≈ 225.71 bytes ≈ 52MB,
and the public key size is 24 bytes and the signature maximal size ≈ 3.48KB.

3 Improvements to the Merkle signature scheme

We give a version of the Merkle signature scheme, which is forward secure and the number of possible
signatures is practically unlimited. We proceed in two steps. First we give the forward secure version and
then the one with respect to the number of signatures.

3.1 First improvement to the Merkle Siganture Scheme

We can save space for the private key in the Merkle signature scheme if we can compute a specific one-time-
signature key pair any time we need it, that is why we need a deterministic key generator and, therefore, we
must make some changes at the one-time signature scheme.

Informally, by a signature scheme with deterministic key generation we mean a triple of algorithms
(Gen, Sig, V er), where Gen is deterministic with an input parameter seed such that if seed is selected
randomly, then Gen seems to be probabilistic. In an analogous way we have the concept for a one-time
signature scheme with deterministic key generation.

Now let us consider a pseudorandom bit generator PRG. We have adopted the definitions given in
[BY03]. Roughly speaking, a pseudorandom bit generator g : {0, 1}l → {0, 1}l+l′ is cryptographic secure if
g(Ul) and Ul+l′ are computationally indistinguishable, where Uα denote the uniform distribution on {0, 1}α.

We assume that there exists PRG : {0, 1}s → {0, 1}u which is a (tprg, εprg) pseudorandom bit generator
and u ≥ 2s.
Improved key generator algorithm Gen. On input s and N ∈ N, Gen chooses g−1 ∈R {0, 1}s and
obtains the key pair (Xi, Yi) ← 1Gen(s, seedi) for each 0 ≤ i < 2N , where (gi, seedi) ← PRG(gi−1). As
before, Gen computes the corresponding Merkle tree, i.e. Kj,ij for 0 ≤ j ≤ N and 0 ≤ ij < 2j . Gen outputs
the tree’s depth N and the tree’s root R as the public key, and g−1 as the private key. The signer must keep
a counter in order to sign sequentially. At this point such counter must be initialized to zero.
Improved signature algorithm Sig. Let i be the counter. On input the message M and the private
key gi−1. Sig obtains (gi, seedi) ← PRG(gi−1) in oder to call (Xi, Yi) ← 1Gen(s, seedi), obtains τ ←
1Sig(M,Xi) and computes (PN , . . . , P1), the i-labeled sibling path for the leaf H(Yi), then Sig outputs the
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signature σ = (i, τ, Yi, PN , . . . , P1) and, finally, Sig deletes gi−1 and seedi, and after that increments the
counter i by one.
Verification algorithm remains the same.

3.1.1 Security

Bellare and Yee define in [BY03] the concept of forward-secure pseudorandom bit generator and give its
construction from any pseudorandom bit generator. This tool permits that the new version of the Merkle
signature scheme remains not only secure, but also forward secure as we mention below.

Proposition 2 Let H be a (tcr, εcr) collision resistant hash function, let 1Sign be a (t1s, ε1s) one-time
signature scheme and let PRG be a (tprg, εprg) pseudorandom bit generator, such that 2N+2εprg ≤ 1, εcr ≤ 1

4 ,
tcr ≥ t + (N + 1)th + 2N ts + tg, t1s ≥ t + 2N ts + tg and tprg = t + tg + 2N ts + tv + O(2N+1s) for some t and
some N < b− log2

ε1s

2 c, where th is the time needed to compute a hash value, ts is the time needed to compute
a one-time signature, tv is the time needed to verify a Merkle signature and tg is the time needed to generate
a key pair for the Merkle signature scheme. Let ε = max{4εcr, 2N+2ε1s, 2N+2εprg}, then the improved Merkle
signature scheme Sign is (t, 2N , ε) existentially unforgeable under adaptive chosen message attack.

3.1.2 Forward security

In the rump session of Eurocrypt 97, Anderson introduced the idea of forward secure scheme [And02]. The
idea is that the use of a public key is divided in periods. During that use, the public key remains the same
whereas the private key changes in each period. If the private key is compromised in a certain period, the
signatures which were made in previous periods remain secure, i. e. they cannot be forged.

Bellare and Miner [BM99] formalize these ideas and present a forward secure scheme based on the hardness
of factoring.

Krawczyk [Kra00] suggests the idea of using Merkle certification tree where the leaves are the period
certificate information which includes the period’s public key and period’s number but not a signature in
order to make a conventional signature scheme a forward secure one. Maklin et al. [MMM02] construct a
forward-secure signature scheme which is also based on conventional signature schemes.

Bellare and Miner give in [BM99] the definition of the key-evolving signature scheme which consists of
four processes (Gen, Upd, Sig, V er), where Gen is the key generation process, Upd is the update process,
Sig is the signature process and V er is the verification process. The Gen receives as input the security
parameter, the number of periods and maybe other information. The Upd process is called in order to
update the private key.

Roughly speaking a key-evolving signature scheme is forward secure if any adversary who obtains the
private key in a certain period cannot succeed in forging a signature of any of the previous periods. In this
case, the adversary calls the Upd process any time he wants.

In our case, the update process is intrinsic to the signature process and cannot be called at any time.
Each period consists of a number of signatures instead of time.

We adopt the convention that a secret key in a period T is the null string, where T is the number of
periods for the signature scheme.

Remark 1 With the notation of the description of the original Merkle signature scheme given in Section 2,
let us modify the scheme as follows:

Signature algorithm Sig. On input a message M , Sig uses (Xi, Yi) in order to obtain τ ← 1Sig(M,Xi).
It computes the i-labeled sibling path for the leaf H(Yi), outputs (i, τ, Yi, PN , . . . , P1), deletes Xi and then
increments i by one.

Key generation algorithm and the verification algorithm of the original Merkle signature scheme
remain the same.

The private key at the period i is either SKi = {Xj}i≤j<2N or SKi = {(Xj , Yj)}i≤j<2N .
With the hypothesis of Proposition 1, this version of the original Merkle signature scheme is (t, ε, 2N )

forward secure, where the number of periods is 2N and each period consists of only one signature.
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Proposition 3 With the hypothesis of the proposition 2. The improved version of the Merkle signature
scheme is forward secure, with each period consisting of only one signature.

3.1.3 Efficiency

We will consider the improvement due to Szydlo [Szy03] which computes sequential tree leaves and authen-
tication path data in time N and space less than 3N , where the units of computation are hash function
evaluations or leaf value computations, and the units of space are the number of node values stored.

The signer must keep not only the counter i in order to sign sequentially, but also up to 3N node values
needed for Szydlo’s method and, additionally, some gj in order to reduce the computation of the key pair
(Xi, Yi). Let p be an integer such that 0 ≤ p ≤ N . Set q = N − p. If we store {gk2p−1}0≤k<2q , then we must
call PRG no more than 2p times to compute (gi, seedi) for 0 ≤ i < 2N .

In order to compute a leaf j from {gi−1}∪ {gl2p−1}b i
2p c<l<2q , where i ≤ j < 2N , the algorithm Sig could

use the algorithm represented in Figure 7.
The Signature algorithm Sig must use the Szydlo technique in order to compute (PN , . . . , P1) the i-labeled

sibling path for the leaf H(Yi).
This time the maximal size of the private key is (3N + 2q+1)s, and the size of the public key is s + lint

and the maximal size of the signature is sN + lsig + lint, where lsig is the maximal size of a signature of the
one-time signature scheme. For instance, using the Lamport-Diffie one-time signature scheme improved by
Merkle we have lsig = s2, and for N = 14, p = N

2 , s = 160 we have that the maximal size of the private
key is 5960 bytes ≈ 5.8KB, and the size of the public key is 24 bytes and the maximal size of the signature
≈ 3.4KB.

3.2 Second improvement to the Merkle signature scheme

Let MSign = (MGen, MSig, MV er) be the Merkle signature scheme as described in the Subsection 3.1.
We describe a new version of the Merkle signature scheme.
Improved key generation algorithm Gen. On input the security parameter s and the parameter N ,
for 22N possible signatures, Gen calls twice MGen to compute (χ−1, (N,R)) and (χ0,−1, (N,R0)) and then
computes ζ0 = MSig(R0, χ−1) and outputs (N,R) as the public key and (χ0,−1, χ0) as the private key,
where (χ0, seed0)← PRG(χ−1).

The signer must keep two counters. One of them counts the number of generated signatures modulo 2N ,
which at this point must be initialized to zero, and the other counts the number of signatures created by the
first generated Merkle key pair, which at this point must be initialized to one. The signer must also keep
(ζ0, R0).
Improved signature algorithm Sig. Let i and j be the counters described in the previous improved
key generation algorithm. On input a message M and the secret key (χj−1,i−1, χj−1), Sig computes τi ←
MSig(M,χj−1,i−1) and sets σ = (τi, Rj−1, ζj−1), then computes (χj−1,i, seedj−1,i) ← PRG(χj−1,i−1) and,
after that, increments i by one. If at this point i ∼= 0 mod 2N , Sig computes (χj , seedj)← PRG(χj−1) and
calls MGen to obtain (χj,−1, (N,Rj)) then computes ζj ←MSig(Rj , χj). Sig sets i← 0 and increments j
by one. Finally, Sig outputs the signature σ.

The signer must keep (ζj−1, Rj−1) for further signatures.
Improved verification algorithm V er. On input a signature σ = (τ,R′, ζ) and a message M , V er accepts
the signature if both MV er(M, τ, (N,R′)) and MV er(R′, ζ, (N,R)) are true, and rejects it otherwise.

3.2.1 Security

This improved version of the Merkle signature scheme uses random and independent instances of the Merkle
signature scheme. This time, there is a base instance, whose public key is used as the public key of the
scheme and the public key of one of the other instances is signed by the base instance. This improved
version is as secure as the Merkle signature scheme.
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Proposition 4 Let MSign be a (tms, 2N , εms) Merkle signature scheme, such that tms ≥ t+2N (2N tsig+tgen)
and 2N+1εms ≤ 1 for some t, where tsig is the time needed for MSig to sign a message and tgen is the time
needed for MGen to generate a key pair. Then the improved version of the Merkle signature scheme Sign
is (t, 22N , ε) existentially unforgeable under adaptive chosen message attack, where ε = 2N+1εms.

3.2.2 Efficiency

The key generation algorithm and the verification algorithm of this version take twice the time for the Merkle
signature scheme for the same parameter N , but this time the number of possible signatures is 22N instead
of only 2N .

The signature algorithm must compute a key pair of the Merkle signature scheme after 2N created
signatures. This can be improved if it computes two nodes of the Merkle tree after each signature process.
We describe the algorithm bellow.

The Szydlo method computes upto N leaves of the Merkle tree which are spread. Therefore we must have
an efficient way to compute such leaves. If 0 ≤ p ≤ N and q = N − p, then we can store 2q PRG’s outputs
in order to compute each Merkle tree’s leaf with upto 2p calls to the PRG. In the algorithm represented in
Figure 8 we set p =

⌊
N
2

⌋
. The auxiliary values Authk are needed in the Szydlo method, that is why they

are also computed in the algorithm represented in Figure 8.
The Szydlo Method Szydlo method will be used in the algorithm represented in Figure 9 in order to

compute the i-th sibling path of a Merkle tree’s leaf needed to compute a Merkle signature in an efficient
way. This method uses as input the values Authk, which are computed in the algorithm represented in
Figure 8. The auxiliary Keepk and Needk are updated during each use of Szydlo method, for 0 ≤ k < N .
The Szydlo Method outputs the sibling paths sequentially. The values Keepk and Needk can be initialized
to the null string for i = 0.

In the Szydlo method a leaf must be computed calling Leaf-Calc. In Figure 7 an algorithm is represented,
which obtains the value of leaf leaf from Pr = {χi−1} ∪ {χl2p−1}b i

2N c<l<2q

The Merkle verification algorithm is represented in Figure 10. The improved versions for the key gener-
ator, the signature and the verification algorithms are represented in Figures 2, 3 and 4, respectively.

4 Experimental Results

Our experiments are estimates of the size of the Merkle keys and the Merkle signature and they are also
estimates of the time needed for the Key Generation, Signature and Verification algorithms. These exper-
iments were made on a SUN 4 ultra SPARC Sun-Blade-100, Sun OS 5.8, at 500MHz and we have used
RIPEMD160 as hash function, our improved version of the Lamport-Diffie one-time signature scheme, which
is described in Section B, and the number of possible signatures is 2N . The cryptographic library used in
the computations of RIPEMD160 values is OpenSSL [Ope] version 0.9.7d. and the used pseudorandom bit
generator is ISAAC [ISA].

In Table 1 is shown the time consumption for signing and verifying with RSA. The time consumption
depends on the length of the RSA keys. The security of the RSA signature scheme increases with the length
of the key. In Table 2 the comparison between our first version of the Merkle signature scheme (1MSS) and
our second one (2MSS) is shown. The number of possible signatures is 2N and the public key size is 24 bytes.

Here we compare the efficiency for signing and verifying. In this case, the improved version of the Merkle
signature scheme is more efficient than RSA with a 2048-bit key for verifying with the parameter N ≤ 40
and is almost as efficient as RSA with 2048-bit key for signing with parameter N ≤ 16. The number of
possible signatures is 2N .

Now we compare the security of these signature schemes. In our experiment we have measured the
time for calculating a RIPEMD160 hash value of input size of 320 bits and we have an estimation of
(7.8 × 10−5sec)(500MHz) = 3.9 × 104 instructions for a RIPEMD160 value computation. Assuming that
there exists a hash function H such that the computation of a hash value were 3.9×104 instructions, the best
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RSA Signature Scheme

key size Signature Verification
(bits) milliseconds

512 28.01 1.08
1024 55.52 2.09
2048 224.55 6.50

Table 1: Timing and Size for RSA.

Key Generation Time Private key size Signature Time Signature size Verification
Kb Kb Time in ms

N 1Mss 2Mss 1Mss 2Mss 1Mss 2Mss 1Mss 2Mss 1Mss 2Mss
8 1.72 sec 0.222 sec 804 bytes 0.633 217 ms 105 ms 1.96 3.78 1.53 2.4
10 6.89 sec 0.438 sec 1.21 Kb 0.906 337 ms 135 ms 2 3.82 1.7 2.56
12 27.6 sec 0.869 sec 1.96 Kb 1.02 564 ms 158 ms 2.04 3.86 1.86 2.73
14 1.84 min 1.73 sec 3.32 Kb 1.45 1.03 sec 204 ms 2.07 3.89 2.03 2.89
16 7.35 min 3.45 sec 5.94 Kb 1.57 2.04 sec 230 ms 2.11 3.93 2.19 3.06
18 29.4 min 6.9 sec 11.1 Kb 2.31 4.23 sec 317 ms 2.15 3.97 2.36 3.23
20 1.96 hrs 13.8 sec 21.2 Kb 2.43 9 sec 350 ms 2.19 4.01 2.53 3.39
22 7.84 hrs 27.6 sec 41.3 Kb 3.8 19.4 sec 531 ms 2.23 4.05 2.69 3.56
24 1.31 days 55.1 sec 81.4 Kb 3.91 41.8 sec 577 ms 2.27 4.09 2.86 3.72
26 5.23 days 1.84 min 162 Kb 6.53 1.5 min 973 ms 2.31 4.13 3.02 3.89
28 20.9 days 3.68 min 322 Kb 6.65 3.22 min 1.05 sec 2.35 4.17 3.19 4.06
30 83.6 days 7.35 min 642 Kb 11.8 6.89 min 1.93 sec 2.39 4.21 3.36 4.22
32 335 days 14.7 min 1.25 Mb 11.9 14.7 min 2.05 sec 2.43 4.25 3.52 4.39
34 3.67 years 29.4 min 2.5 Mb 22 31.2 min 4.01 sec 2.46 4.29 3.69 4.55
36 14.7 years 58.8 min 5 Mb 22.1 1.1 hrs 4.24 sec 2.5 4.32 3.85 4.72
38 58.7 years 1.96 hrs 10 Mb 42.2 2.32 hrs 8.56 sec 2.54 4.36 4.02 4.89
40 235 years 3.92 hrs 20 Mb 42.4 4.89 hrs 9.01 sec 2.58 4.4 4.19 5.05

Table 2: Timing for RSA and comparison between our first improvement to the Merkle signature scheme
(1Mss) and our final version (2Mss): Key Generation Time and Private Key Size, Signature Process Time
and Signature Size and Verification Time. The number of possible signatures is 2N and the public-key size
is 24 bytes.
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attack for finding collisions were the birthday attack, and the Moore’s law would apply, and the 500MHz
microprocessors were available in the middle of 2001 then from [BK04] we have that with 280 trials ≈ 295.25

instructions, the probability for finding a collision is < 1
2 . Taking into account the considerations made by

Lenstra and Verheul in [LV01], which are summarized in the formula

L[2k]
IMY (y) ∗ 212(y−1999)/r

≥ L[2512]
104

we find y = 2055.55 and then k = 2128, i.e. Merkle is as secure as RSA with such key size. Analogous
estimates can be done for hash functions such as SHA-256, SHA-384, and SHA-512.

Brassard et al. present in [BHT88] a quantum algorithm for finding a collision in arbitrary r-to-one
function F : X → Y , such an algorithm returns a collision after an expected number of Θ( 3

√
|X|) evaluations

and uses space Θ( 3
√
|X|). Using that algorithm we have that it will be found a collision for H in 44556 years

from now with an hypothetical 500MHz quantum computer using Θ(2
160
3 ) qubits under the assumption

that the quantum computing does not improve the time for computing H values and the Moore’s Law does
not apply in quantum computers.

5 Conclusion

We showed that the Merkle signature scheme is existentially unforgeable under adaptive chosen message
attack and we also presented a forward-secure signature scheme from any cryptographic-secure pseudorandom
bit generator, one-time signature scheme and hash function. Using ISAAC, RIPEMD160 and an improved
version of the Lamport-Diffie one-time signature scheme shown in Appendix B, we presented a signature
scheme which is competitive with RSA for verifying, although the number of possible signatures must be
previously fixed. With parameter N = 38 or 40 the number of possible signatures is 2N , which is practically
unlimited. This scheme is also secure in the quantum computing epoch provided that the best quantum
collision finder is the one proposed in [BHT88].
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A Some Proofs

A stateful generator G = (G.key,G.next, b, n) is a (t, ε) forward-secure pseudorandom bit generator, if for all
probabilistic algorithm A = {A1,A2} running in time at most t

Adv
fsprg
G (t) = |Pr[Expfsprg-1

G (A) = 1]− Pr[Expfsprg-0
G (A) = 1]| < ε,

where Expfsprg-1
G and Expfsprg-0

G are described in Table 3. The probability is taken over the coins tosses of
G.key,A1 and A2.

Proposition 5 (Proven in [BY03]) Let G : {0, 1}s → {0, 1}s+b be a (tprg, εprg) pseudorandom bit gen-
erator, let n be an integer such that 2nεprg ≤ 1. Define G = (G.key,G.next, b, n), where G.key outputs
St ∈R {0, 1}s and on input St, G.next obtains X ← G(St) and outputs (St′, Out), where X = St′‖Out,
St′ ∈ {0, 1}s and Out ∈ {0, 1}b. Then G is a (tfsprg, εfsprg) forward secure pseudorandom bit generator,
where εfsprg = 2nεprg and tprg = tfsprg + O(n · (s + b)).

Proof of Proposition 2
Suppose that the improved Merkle signature scheme can be existentially broken via a 2N message attack

in time t and probability ε. Then, there exists F = {F1,F2} a forger such that Pr[V er(M,σ′, PK) = 1 :
(SK, PK)← Gen(s,N);T ← FSig(·,SK)

1 (s); (M,σ′)← F2(T )] ≥ ε in time t.
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Table 3: Experiments

Experiment Exp
fsprg-1
G (A)

St−1 ← G.key
i← −1; h← λ
Repeat

i← i + 1
(Sti, Outi)← G.next(Sti−1)
(d, h)← A1(Outi, h)

Until (d = guess) or (i=n-1)

g ← A2(Sti, h)
Return g

Experiment Exp
fsprg-0
G (A)

St−1 ← G.key
i← −1; h← λ
Repeat

i← i + 1
(Sti, Outi)← G.next(Sti−1)
Outi ← Ub

(d, h)← A1(Outi, h)
Until (d = guess) or (i=n-1)

g ← A2(Sti, h)
Return g

Assuming that H is a (tcr, εcr) collision resistant hash function and 1Sign is a (t1s, ε1s) one-time signature
scheme, we prove that it can be found a distinguisher A for the (tfsprg, εfsprg) forward-secure pseudorandom
bit generator G = (G.key,G.next, s, 2N ) obtained from PRG, where tfsprg = t + tg + 2N ts + tv, εfsprg =
2N+1εprg, and G is as in Proposition 5.

We construct an Algorithm A = {A1,A2} as follows. h is initialized as the null string λ. On input
Out and h, A1 updates h← h‖Out and outputs (not guess, h). On input St and h, A2 obtains Outi from
h for 0 ≤ i < 2N and computes (Xi, Yi) ← 1Gen(s,Outi) ∀i and the Merkle tree’s nodes Kj,kj from Yi

(0 ≤ j ≤ N , 0 ≤ kj < 2j). A2 retains all Xi, Yi and Kj,kj and only deletes Xi after its use. A2 calls F1(s)
and uses Xi, Yi and Kj,kj for signing queries from F1 as an oracle for F1. A2 uses the output T from F1 as
input for F2 in order to obtain (M,σ′). If A2 obtains a forged signature, then outputs 1. In other case it
outputs 0.

Note that in Expfsprg-0
G (A), A2 obtains a random instance of the improved Merkle signature scheme and

that in Expfsprg-1
G (A), A2 obtains a random instance of the original Merkle signature scheme.

Now, by hypothesis Pr[Expfsprg-1
G (A) = 1] ≥ ε within time tfsprg and Pr[Expfsprg-0

G (A) = 1] < ε
2

within time tfsprg because of the hypothesis, we have that the original Merkle signature scheme is (t, 2N , ε
2 )

existentially unforgeable under adaptive chosen message attack as proved in Proposition 1.

And so, Pr[Expfsprg-1
G (A) = 1] − Pr[Expfsprg-0

G (A) = 1] > ε
2 ≥ 2N+1εprg ≥ εfsprg within time tfsprg,

which contradicts the Proposition 5.
�

Proof of Remark 1
Suppose that the Merkle signature scheme can be existentially broken via a 2N message attack in time t

and probability ε. Then we prove that at least one of the following holds:

� It can be found a collision for the underlying hash function with probability at least εcr and within
time tcr.

� The underlying one-time signature scheme can be existentially broken with probability at least ε1s and
within time t1s.

Suppose that exists F = {F1,F2} a forger such that Pr[V er(M, 〈i, ζ〉) = true : (SK0, PK) ←
Gen(s, T, I); (info, k)← FSig(·,SK)

1 (PK); (M, 〈i, ζ〉)← F2(SKk, info) and i < k] < ε in time t.
Let denote σ′ = 〈i, ζ〉. We construct at the same time two algorithms, A = {A1,A2} which try to forge

a one-time signature and B which tries to find a collision.
B begins getting (Pr, Pu) ← 1Gen(s) a pair of one-time signature keys. A1 chooses 0 ≤ i0 < 2N at

random and sets Yi0 := Pu. Now for 0 ≤ i < 2N with i 6= i0, A1 obtains (Xi, Yi)← 1Gen(s) and completes
the generation process for the Merkle signature scheme. Let R be the Merkle tree’s root. This resulting
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generated Merkle key is taken by B. A1 calls F1 and uses 1Sig(·, P r) at most once as an oracle, just in
case F1 needs to compute the (i0 + 1)-th signature. Note that B knows Pr, so it does not use any oracle
to sign with that key. A1 outputs info, where info is the output of F1. B retains the number of messages
k and the messages Mj for 0 ≤ j < k used by F1. On input info, A2 calls F2 with info and {Xj}k≤j<2N

as input and obtains (M,σ′), a forged signature σ′ of a message M for the previous period i, where i < k.
Let σ′ = (i, τ ′, Y ′, P ′

N , . . . , P ′
1) be the forged signature for the message M , A2 outputs (τ ′,M). At this

point, algorithm A has concluded its running time, while B continues. Let σ = (i, τ, Yi, PN , . . . , P1) an
authentic signature for the message Mi, where Mi 6= M . B sets A = (P ′

N , . . . , P ′
1) and B = (PN , . . . , P1).

By hypothesis A is an i-labeled authentication path for the leaf H(Y ′) and B is an i-labeled authentication
path for the leaf H(Yi) both of them with respect to the root R. If either A 6= B or Y ′ 6= Yi then B outputs
either the collision which is found by Lemma 1 or (Y ′, Yi) (note that Y ′ 6= Yi and H(Y ′) = H(Yi) implies a
collision). In other case, B outputs (1, 0).

Let ℘ be the probability that (Y ′, A) obtained by F and (Y, B) obtained by the signature algorithm are
different. If ℘ ≥ 1

2 then B finds a collision for H within time tcr with probability at least ε
2 ≥ εcr. Else

with probability 1
2N , the forged signature output by F satisfies that i = i0. Hence, the attack by A on the

one-time signature scheme succeeds with probability at least 1
2

ε
2N ≥ ε1s within time t1s.

�
Proof of Proposition 4

If the improved version can be existentially broken via a 22N message attack in time t and probability
ε, we construct an algorithm that given two random instance of the Merkle signature scheme, the algorithm
breaks them within time tms and probability εms.

Let (N,RA) and (N,RB) be the public keys of two random instance of the Merkle signature scheme and
let OX be the oracle for signing messages with the private key corresponding to the public key (N,RX),
where X = A,B.

Suppose that exists F = {F1,F2} a forger such that

Pr[V er(M,σ′, PK) = 1 : (SK, PK)← Gen(1s, N);T ← FSig(·,SK)
1 (1s); (M,σ′)← F2(T )] ≥ ε

in time t.
We construct two algorithms A = {A1,A2} and B = {B1,B2} at the same time as follows:
On input (N,RA), A1 sets R0 ← RA. A1 and B1 generate the same instance of the improved version of

the Merkle signature scheme. On input (N,RB), B1 chooses 0 ≤ j0 < 2N at random and sets Puj0 ← (N,R).
A1 and B1 call F1 and sign queries from F1 in the following way: let i be the number of created signatures,
set j =

⌊
i

2N

⌋
. B1 computes (Prj , Puj)←MGen(1s, N) in case that j 6= j0 and i ∼= 0 mod 2N . A1 obtains

ζj ← OA(Puj). B1 uses MSig(·, P rj) in case of
⌊

i
2N

⌋
6= j0 and uses the oracle OB in the other case.

B1 and A1 output T , the output of F1.
On input T , B2 and A2 call F2 with input T . Let (M, (τ, Pu, ζ)) be the forged signature output by F2.

A2 outputs (Pu, ζ) and B2 outputs (M, τ).
We have that ε ≤ Pr[V er(M, (τ, Pu, ζ), (N,R0)) = true] = Pr[MV er(M, τ, Pu) = true∧MV er(Pu, ζ, R0) =

true]. The signatures have the form τ = (i mod 2N , τ1s,Υ1s, PN , . . . , P1) and ζ = (
⌊

i
2N

⌋
, ζ1s,Υ′

1s, QN , . . . , Q1),
with probability 1

2N , the forged signature output by F2 satisfies that
⌊

i
2N

⌋
= j0. Let ℘ be the probability

that the i obtained by F2 is 0 modulo 2N . If ℘ > 1
2 , then the attack by A succeeds with probability at least

1
2

1
2N ε ≥ εms. If ℘ ≤ 1

2 , then the attack by B succeeds with probability at least 1
2

1
2N ε ≥ εms.

�

B One-time Signature schemes

Let H be a hash function which output has bit size s. Suggested improved version of the Lamport-Diffie
one-time signature given by Merkle.
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Key generator algorithm Gen. On input s, Gen outputs a pair (X, Y ). X = (x0, . . . , xs′−1) and
Y = (y0, . . . , ys′−1), where s′ = s + 1 + blog2 sc, xi ∈R {0, 1}s and yi = H(xi) for 0 ≤ i < s′. X is the secret
key and Y is the verification key.
Signature algorithm Sig. On input the message M and the secret key X = (x0, . . . , xs′), Sig computes
H(M) ‖ Z = m0 · . . . ·ms′−1, where Z is the 1 + blog2 sc-bit representation of the quantity of zeros in the
bit representation of H(M), and outputs τ = (xi1 , . . . , xik

), where 0 ≤ i1 < · · · < ik < s′ and mj = 1 iff
j ∈ {i1, . . . , ik}. τ is the signature.
Verification algorithm V er. On input the message M , a signature τ ′ = (z1, . . . zl) and a verification
key Y , V er computes m0 · . . . · ms′−1 from M as in the signature process, and outputs true if l = k and
yij = H(zj) for j ∈ {α : miα = 1} or outputs false in other case.

In our experiments we have implemented an improved version of the Lamport-Diffie one-time signature
scheme. Suppose that H : {0, 1}∗ → {0, 1}s is a hash function and let s′′ be an integer such that s′′ =
d s+3blog2 sc

2 e

s s′ s′ s′

M = H(M) Z O T
M = H(M)‖Z‖O‖T , s′ = blog2 sc.

Let M be a message. We represent H(M) as quits (quaternary digits) and let Z, O and T be the
corresponding bit string representation of the quantity of zeros, ones and twos in the representation of
H(M) as quits, respectively.
Deterministic key generator algorithm Gen. On input s and seed ∈ {0, 1}s, Gen sets g−1 ← seed and
computes (gi, xi) ← PRG(gi−1) 0 ≤ i < s′′. Gen outputs Y = H(H3(x0), . . . ,H3(xs′′−1)) as the verifying
key and g = seed as the private key.
Signature algorithm Sig. On input a messageM and the private key g, Sig computes M = m0 ·. . .·ms′′−1

as quits fromM. Sig outputs the signature τ = (Hm0(x0), . . . ,Hms′′−1(xs′′−1)), where xi is computed from
g as in Gen for 0 ≤ i < s′′.
Verification algorithm V er. On input a message M, a signature τ ′ and a public key Y , V er computes
M = m0 · . . . · ms′′−1 as quits from M. Suppose that τ ′ = (z0, . . . , zs′′−1). V er outputs true if Y =
H(H3−m0(z0), . . . ,H3−ms′′−1(zs′′−1)) and false in other case.
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Figure 2: improved Merkle Key Generation and auxiliary values for signing efficiently
Algorithm: improved Merkle Key Generation iMGen

Input: s, N
Output: (Pr, Pu) and auxiliary values

Procedure:

(PrA, PuA, {AuthA,k}0≤k<N )←MGen(s, N);
(PrB , PuB , {AuthB,k}0≤k<N )←MGen(s, N);
χ← χA,−1; /*χA,−1 obtained from PrA*/

χC ← {0, 1}s /*chosen at random*/

i mod 2N = 0;

i div 2N = 0;

j = 0;

FL = TRUE;

k at level ← ~0;

ζ ←MSig(PuB , P rA,i div 2N ,
{AuthA,k, KeepA,k, NeedA,k}N−1

k=0 );
Pu = (N, PuA) /*the public key*/

Pr = (PrA, P rB) /*the private key*/

/*

Keep the auxiliary values

{AuthX,k, KeepX,k, NeedX,k}0≤k<N,X=A,B, (ζ, PuB),
i mod 2N = 0, i div 2N = 1, j, FL and k at level

*/

return (Pr, Pu, and the auxiliary values);

Figure 3: improved Merkle Signature Algorithm using the Szydlo method for computing a sibling path
efficiently
Algorithm: improved Merkle Signature iMSig

Input: The message M, the private key Pr = (PrA, P rB , and the auxiliary values)
Output: The signature σ = (τ, PuB , ζ)
Procedure:

τ ←MSig(M, PrB , i mod 2N ,
{AuthB,k, KeepB,k, NeedB,k}N−1

k=0 );

σ ← (τ, PuB , ζ);
mMGen(s, N, PrC , PuC , χC , {AuthC,k}N−1

k=0 , j,

k at level, stack, FL);

if (i div 2N <= i mod 2N)

NLCom(χ, i mod 2N, index, needed index,

needed leaf values);

i mod 2N += 1;

if (0 == i mod 2N mod 2N) {
(PrB , PuB)← (PrC , PuC);
(PrC , PuC)← empty key pair;

χC ← {0, 1}s /*chosen at random*/

j = 0;

k at level ← ~0;

stack ← empty stack;

FL = TRUE;

χ← χ
A,i div 2N-1

;

index = 0;

Obtain needed index from Szydlo method with

{AuthA,k, KeepA,k, NeedA,k}N−1
k=0

needed leaf values ← vector of null bit strings;

ζ ←MSig(PuB , P rA,i div 2N ,
{AuthA,k, KeepA,k, NeedA,k}N−1

k=0 );
i mod 2N = 0;

}
return σ;
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Figure 4: improved Merkle Verification Algorithm
Algorithm: improved Merkle Verification iMV er

Input: The message M, the signature σ = (τ, Y, ζ) and the public key (N, R)
Output: true if the signature is a valid one or false in other case

Procedure:

if (MV er(M, τ, (N, Y )) == false) return false;
if (MV er(Y, ζ, (N, R)) == false) return false;
return true

Figure 5: modified Merkle Key Generation and auxiliary values for signing efficiently
Algorithm: modified Merkle Key Generation mMGen

Input: s, N, (PrC , PuC), χ, {AuthC,k}0≤k<N, j, k at level, stack and FL

Output: updated (PrC , PuC), χ, {AuthC,k}0≤k<N, j, k at level, stack and FL

Procedure:

int computed;

hash value K, left, right, root;

computed = 0;

while (0 < j) {
if (FL) {
j = N;

if (0 == k at level[N] mod 2p)

update Pr(χ, PrC);

/*{χl2p−1)}0≤l<2q is being stored */

(χ, seed)← PRG(χ);
(Pr1s, Pu1s)← 1Gen(seed);
K ←H(Pu1s);
computed += 1;

push(stack, K, j, k at level[j]);

k at level[j] += 1;

}
if (computed == 2) {
FL = not(two at same level(stack));

return;

}

while(two at same level(stack)) {
pop(stack, right, j, right at level j);

pop(stack, left, j, left at level j);

if (right at level[j] == 1)

Auth
C,N−j ← right;

j -= 1;

K = H(concat(left, right));

computed += 1;

push(stack, K, j, k at level[j]);

k at level[j] += 1;

if (computed == 2) {
FL = not(two at same level(stack));

return;

}
}
FL = TRUE;

}
pop(stack, root, j, k at level[0]);

PuC ← (N, root);

PrC ← ({χl2p−1}0≤l<2q , {AuthC,k}N−1
k=0 );

return;
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Figure 6: Computation of the needed leaf values in the Szydlo method, which will be used in the improved
Merkle Signature Algorithm
Algorithm: needed leaf computation NLCom

Input: χ, leaf index, index, needed index, needed leaf values

Output: updated values for χ, index, needed index, needed leaf values

Procedure:

(χ, seed)← PRG(χ);
if (leaf index == needed index[index]){
(X, Y) ← 1Gen(s, seed);
needed leaf values[index] ← H(Y);

index += 1;

}

Figure 7: Leaf-Calc Algorithm
Algorithm: Computing a Merkle tree’s leaf Leaf-Calc

Input: the private key Pr = {χi−1}∪{χl2p−1}j
i

2N

k
<l<2q, the index leaf and the counter i

Output: the value of the leaf whose index is leaf
Procedure:

k ←
¨

leaf
2p

˝
;

if i < k2p{
(G, seed)← PRG(χk2p−1);
k ← k2p;

}

else {
(G, seed)← PRG(χi−1);
k ← i;

}

for (count=k; count < leaf; count++) {
(G, seed)← PRG(G);

}
compute (Prleaf , Puleaf ) = 1Gen(s, seed);
L← H(Puleaf );
return L;
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Figure 8: Merkle Key Generation and auxiliary values for signing efficiently
Algorithm: Merkle Key Generation MGen

Input: s, N
Output: (Pr, Pu) and {Authk}0≤k<N

Procedure:

int j, k at level[N max];

hash value K;

χ← {0, 1}s /* χ−1 at random */

k at level ← ~0;
j = N;

while (0 < j) {
j = N;

if (0 == k at level[N] mod 2p) store(χ);
/*{χl2p−1}0≤l<2q is being stored */

(χ, seed)← PRG(χ);
(Pr1s, Pu1s)← 1Gen(seed);
K ← H(Pu1s);
push(stack, K, j, k at level[j]);

k at level[j] += 1;

while(two at same level(stack)) {
right = pop(stack);

left = pop(stack);

if (k at level[j] == 1)

AuthN−j ← right.value;

j = left.j - 1;

K = H(concat(left.value, right.value));

push(stack, K, j, k at level[j]);

k at level[j] += 1;

}
}
root = pop(stack);

Pu← (N, root.value);

Pr ← ({χl2p−1}0≤l<2q)

Figure 9: Merkle Signature Algorithm using the Szydlo method for computing a sibling path efficiently
Algorithm: Merkle Signature MSig

Input: The message M, the private key Pr, the counter i, and {Autk, Keepk, Needk}0≤k<N

Output: The signature τ = (i, τ1s, Y1s, PN , . . . , P1)
Procedure:

(χi, seedi) extract from private key(Pr, i)
(Pr1s, Pu1s)← 1Gen(s, seedi)
τ1s ← 1Sig(M, Pr1s)
(PN , . . . , P1)← Szydlo method({Authk, Keepk,

Needk}0≤k<N , P r)

τ ← (i, τ1s, Pu1s, PN , . . . , P1)
Delete χi−1 from Pr and include χi in Pr
Increment i by one
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Figure 10: Merkle Verification Algorithm
Algorithm: Merkle Verification MV er

Input: The message M, the signature τ = (i, τ1s, Y, PN , . . . , P1) and the public key (N, R)
Output: true if the signature is a valid one or false in other case

Procedure:

hash value W, left, right;

int j;

if (1V er(τ1s, Y ) == false) return false;
W = H(Y );

for (j = N; 0 < j; j--) {
if (

j
i

2N−j

k
mod 2 == 0) {

left = W;

right = Pj;

}else {
left = Pj;
right = W;

}
W = H(concat(left, right));

}
if (W 6= R) return false;
return true;
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