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The overwhelming majority of deployed crypto-
systems rest on only two security assumptions:

Integer Factorization (IFP): RSA, BBS.
Discrete Logarithm (DLP): ECC, PBC.

Shor’s quantum algorithm can efficiently solve
the IFP and the DLP.

Motivation
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.||HH| Post-quantum
cryptosystems

Entirely classical systems:
plug-in replacements for RSA/ECC.
avoid expensive (sometimes non-existing)
purely quantum technologies.
Security assumptions related to NP-
complete/NP-hard problems, apparently
beyond the capabilities of quantum
computers.
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.||I\H| Coding-based
cryptosystems

Many cryptographic primitives supported:
encryption,
digital signatures and identification,
identity-based signatures and identification,
oblivious transfer...
Efficiency and simplicity:
O(n?%) encryption/decryption.
plain arithmetic with matrices and vectors.
Drawback: very large keys.
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A linear [n, k]-code C over K is a k-dimensional
vector subspace of K",

Linear codes

A code may be defined by either
a generator matrix G € Kk, or

a parity-check matrix H e K(-kxn
HG™ = O,
C={uGe K" |ue Kk} ={ve K| H/T =0T}.

The vector s such that Hv'T = sT is called the
syndrome of v.

Hard problems involving codes?
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)
“” General decoding (GDP)

Input: positive integers n, k, t; a finite
field F,; a linear [n, k]-code C < (F,)"
defined by a generator matrix G € (F,)*";
a vector c € (IF,)".

Question: is there a vector m e (F,) s.t.
e = ¢ - mG has weight w(e) < t?
NP-complete!

Search: find such a vector m.
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Input: positive integers n, k, t; a finite
field F,; a linear [n, k]-code C < (F,)"

defined by a parity-check matrix H e
(F )™ with r = n - k; a vector s e (F,)".

Question: is there a vector e € (F,)" of
weight w(e) < t s.t. He' = s'?
NP-complete!

Search: find such a vector e.

Syndrome decoding (SDP)
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Let g = p? for some d > 0, and p a prime power.

An alternant code A(L, D) over F, is defined by:
a sequence L € (F,)" of distinct elements with n < p;
a sequence D e (F,)" of nonzero elements;

eaS|Iy decodable (t/2 errors) syndromes from H =
T,(vdmy(L) diag(D)).

JA Goppa code I'(L, g) over IF, is an alternant code
where:

L e (F,)" satisfies géLg #0,and D = (1/g(L)) for some
monic polynomlal d(x) € F,[x] of degree ¢;

good error correction capability (all t design errors) in
characteristic 2.

Alternant and Goppa codes
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Key generation:

Choose a "“secure”, uniformly random [n, K]

t-error correcting alternant code A(L, D) over
F,, with L, D e (F,)".

McEliece cryptosystem

Compute for A(L, D) a systematic generator
matrix G e (F,)<".

Set Kpriv = (L, D), Kpub = (G, f).

© Paulo S. L. M. Barreto 2009 USP/DCU




Encryption of a plaintext m e (F,)k:

Choose a uniformly random t-error vector e e (IF,)"
and compute ¢ = mG + e € (IF,)" (IND-CCA2 varlant

via e.g. Fujisaki-Okamoto).

McEliece cryptosystem

Decryption of a ciphertext c e (IF,)":
Use the trapdoor to obtain the usual alternant parity-
check matrix H (or equivalent).

Compute the syndrome s™ « Hc™ = He' and decode it
to obtain the error vector e.

Read m directly from the first kK components of ¢ — e.
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System setup:

Choose m, t, and n = 2™,

Choose a hash function #: {0, 1}* x N — (F,)"k.
Key generation:

choose a uniformly random [n, k] t-error correcting binary
alternant code A(L, D).

compute for it a systematic parity-check matrix H.
Korivate = (L, D); K = (H, ).
Observation:

Let H, be the trapdoor parity-check matrix for A(L, D), so
that H, = MH for some nonsingular matrix M.

If s = He' for some t-error vector e, then s, = MsT =
MHe™ = H,e' is decodable using the trapdoor.

CFS signatures

public

© Paulo S. L. M. Barreto 2009 USP/DCU




Signing a message m:
find c € N such that, for s « H(m, ¢) and s,'

«— Ms', s, is decodable with the trapdoor H,,
and decode s, into a t-error vector e, i.e. sy’
= H,e" and hence s™ = He'.

the signature is (e, c).

Verifying a signature (e, ¢):
compute sT « He'.
accept iff w(e) = tand s = H(m, C).

CFS signatures

© Paulo S. L. M. Barreto 2009 USP/DCU




Density of decodable syndromes: 1/t!

Signature length (permutation ranking) is

~ lg(nt/t!) + Ig(t!) = t g n.

Public key is huge: mtn bits.

Recommendation for security level = 280;
original: m = 16, t = 9, n = 2%, signature
length = 144 bits, key size = 1152 KiB.
updated: m = 15, t = 12, n = 21>, signature
length = 180 bits, key size = 720 KiB.

CFS signatures
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T
“” Reducing the key size

Replace a generic code by a permuted and
shortened [W 2006] subfield subcode of a
quasi-cyclic [BCGO 2009] or quasi-dyadic
[MB 2009] code.

O(n) instead of O(n?4) space.

O(n Ig n) instead of O(n?4) time.
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A matrix H € K> over a field K is called a Cauchy

matrix iff H; = 1/(z, - L;) for disjoint sequences z
e Ktand L e K” of dlstlnct elements.

Property: any Goppa code where g(x) is square-

free admits a parity-check matrix in Cauchy form
[TZ 1975].

Compact representation, but:
code structure is apparent,

usual tricks to hide it (permute, scale, puncture,
systematize, etc) also destroy the Cauchy structure.

Cauchy matrices
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)
“” Dyadic matrices

Let r be a power of 2. A matrix H € R™>
over a ring R is called dyadic iff H; = h; g ;
for some vector h € R".

If A and B are dyadic of order r, then

A B

C:_B A

is dyadic of order 2r.
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Dyadic matrices

fh{
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Dyadic matrices form a subring of R™
(commutative if R is commutative).

Compact representation: O(r) rather than
O(r?) space.

Efficient arithmetic: multiplication in time
O(r Ilg r) time via fast Walsh-Hadamard
transform, inversion in time O(r) in
characteristic 2.

Idea: find a dyadic Cauchy matrix.

Dyadic matrices

© Paulo S. L. M. Barreto 2009 USP/DCU




Theorem: a dyadic Cauchy matrix is only

possible over binary fields, and any
suitable h e (IF,)" satisfies

Dyadic codes

1 1

hig;  h

with z; = 1/h;, + ®

J
arbitrary o, and H;; =
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Choose distinct h, and h; with / = 2Y for

0 < u < [lg n] uniformly at random from
F,, then set

Constructing dyadic codes

1
1

1
h, T h T o

forO<j<i(sothati+j=i®]j).
Complexity: O(n).
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Structure hiding:
choose a long code over F,

Quasi-dyadic codes

blockwise shorten the code,

permute dyadic block columns,
dyadic-permute (and F,-scale) individual blocks,

take a F, subfield subcode of the result.

Quasi-dyadic matrices: (F,>¢)a,
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Quasi-dyadic codes over F,s from trapdoor codes
over F,16, With txt dyadic submatrices:

Compact keys

size generic | shrink RSA NTRU
4096 bits | 57 KiB| 112 | 1024 bits —
6144 bits | 128 KiB| 170 | 2048 bits | 4411-7249 bits
8192 bits | 188 KiB | 188 | 3072 bits | 4939-8371 bits
12288 bits | 511 KiB | 340 | 7680 bits | 7447-11957 bits
16384 bits | 937 KiB | 468 | 15360 bits | 11957-16489 bits
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Preliminary timings against RSA (times in ms):

Efficient processing

level | RSA QD RSA QD RSA @]D)
keygen | keygen | encrypt | encrypt | decrypt

280 563 | 17.2 0.431 0.817 15.61
2112 1971 | 18.7 1.548 | 1.233| 110.34
2= 4998 | 20.5 3.467 | 1.575| 349.91
2192 | 628183 | 47.6 22.320 | 4.695 | 5094.10
2595 —| 54.8 —| 6.353 —

How about security?
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)
“” Quasi-dyadic GDP/SDP

Solve the GDP or the SDP for quasi-dyadic
codes.

Theorem: the QD-GDP and the QD-SDP
are NP-complete.
Caveat:
only constitutes trapdoor one-way functions!
average-case complexity?
structural attacks?
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.n”‘” QD-CFS signatures

The maximum length of regular QD codes
is n = 2M-1 even without puncturing.

Difficulty to get n = 2™: the full sequences
z and L (length n) are no longer disjoint =
1/(z; - L;) undefined.

Binary QD codes: density of decodable
syndromes = 1/(2t t!), a factor 2t worse
than irreducible codes - but better than
1/(2t)!, and up to a factor t shorter.
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.n”‘” QD-CFS signatures

Yet only a single block of t rows and a
subset of the columns are needed to
define a shortened QD code!

Solution: modify the dyadic construction
to allow for 2m1 < n < 2m by admiting
undefined entries when they are unused.

Binary QD codes with minimal puncturing:
density of decodable syndromes = 1/(c t!)
for n = 2m/cl/t,
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.n”‘” QD-CFS signatures

Suggestion for security level = 280: m =
15, t = 12, n = 215, signature length =
180 bits, key size = 180 KiB (vs. 720 KiB
for a generic, irreducible Goppa code).

Structural security: work in progress.

. but puncturing seems very effective in
thwarting such attacks.
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Coding-based cryptography is a purely
classical, post-quantum alternative to
quantum cryptography.

Several pros over traditional systems
(quantum immunity, efficient operations),
main con already solved (shorter keys).

New functionalities still a challenge (key
agreement, IBE, formal security, dyadic
lattices) = good research opportunity ©
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Questions?

Thank You!
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Appendix
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“Hey, wait, I know McEliece, and this does not
look quite like it!”

McEliece cryptosystem

Observations:

A secret, random L is equivalent to a public, fixed L

coupled to a secret, random permutation matrix P €
(F,)<, with A(LP, DP) as the effective code.

If G, is a generator for A(L, D) when L is public and
fixed, and S is the matrix that puts G,P in systematic

form, then G = SG,P is a systematic generator of
A(LP, DP), as desired. |
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"”H” McEliece-Fujisaki-
Okamoto: Setup

Random oracle (message authentication
code) H: (F,)x x {0, 1}* — Z/sZ, with s =

(n choose t) (p — 1)t.

Unranking function U: Z/sZ — (F,)".

Ideal symmetric cipher &: (F,)%x x {0, 1}*
— {0, 1}*.

Alternant decoding algorithm D: (F,)" X
(Fg)™ x (Fp)" — (Fp)* x (F,)".
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.||I\H| McEliece-Fujisaki-
Okamoto: Encryption

Input:
uniformly random symmetric key r e (F,)%;
message m € {0, 1}*.
Output:
McEliece-FO ciphertext c € (F,)” x {0, 1}*.
Algorithm:
h « H(r, m)
e < U(h)
W« rG + e
d« &(r, m)
c « (w, d)
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.||I\H| McEliece-Fujisaki-
Okamoto: Decryption

Input:

McEliece-FO ciphertext ¢ = (w, d).
Output:

message m € {0, 1}*, or rejection.
Algorithm:

(r, e) « D(L, D, w)

m « E1(r, d)

h <« H(r, m)

v « U(h)

acceptmev=eandw=rG + e
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The number of possible hash values is 27—k = 2mt
~ nt and the number of syndromes decodable to
codewords of weight t is

CFS signatures

n nt
(t) ~

~.The probability of finding a codeword of weight
t is = 1/t!, and the expected value of hash
queries is = t! assuming all t design errors can be
corrected (only true for binary Goppa codes!).
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