#include "codecrypt.h" using namespace ccr; /* * helpful stuff for arithmetic in GF(2^m) - polynomials over GF(2). */ int gf2p_degree (uint p) { int r = 0; while (p) { ++r; p >>= 1; } return r - 1; } inline uint gf2p_add (uint a, uint b) { return a ^ b; } uint gf2p_mod (uint a, uint p) { if (!p) return 0; int t, degp = gf2p_degree (p); while ( (t = gf2p_degree (a) ) >= degp) { a ^= (p << (t - degp) ); } return a; } uint gf2p_gcd (uint a, uint b) { uint c; if (!a) return b; while (b) { c = gf2p_mod (a, b); a = b; b = c; } return a; } uint gf2p_modmult (uint a, uint b, uint p) { a = gf2p_mod (a, p); b = gf2p_mod (b, p); uint r = 0; uint d = 1 << gf2p_degree (p); if (b) while (a) { if (a & 1) r ^= b; a >>= 1; b <<= 1; if (b >= d) b ^= p; } return r; } bool is_irreducible_gf2_poly (uint p) { if (!p) return false; int d = gf2p_degree (p) / 2; uint test = 2; //x^1+0 for (int i = 1; i <= d; ++i) { test = gf2p_modmult (test, test, p); if (gf2p_gcd (test ^ 2 /* test - x^1 */, p) != 1) return false; } return true; } uint gf2p_tablemult (uint a, uint b, uint n, const std::vector&log, const std::vector&antilog) { if (! (a && b) ) return 0; return antilog[ (log[a] + log[b]) % (n - 1) ]; } bool gf2m::create (uint M) { if (M < 1) return false; //too small. m = M; n = 1 << m; if (!n) return false; //too big. poly = 0; /* * find a conway polynomial for given degree. First we "filter out" the * possibilities that cannot be conway (reducible ones), then we check * that Z2[x]/poly is a field. */ for (uint t = (1 << m) + 1, e = 1 << (m + 1); t < e; t += 2) { if (!is_irreducible_gf2_poly (t) ) continue; //try to prepare log and antilog tables log.resize (n, 0); antilog.resize (n, 0); log[0] = n - 1; antilog[n-1] = 0; uint i, xi = 1; //x^0 for (i = 0; i < n - 1; ++i) { if (log[xi] != 0) { //not a cyclic group log.clear(); antilog.clear(); break; } log[xi] = i; antilog[i] = xi; xi <<= 1; //multiply by x xi = gf2p_mod (xi, t); } //if it broke... if (i < n - 1) continue; poly = t; break; } if (!poly) return false; return true; } uint gf2m::add (uint a, uint b) { return gf2p_add (a, b); } uint gf2m::mult (uint a, uint b) { return gf2p_tablemult (a, b, n, log, antilog); } uint gf2m::exp (uint a, int k) { if (!a) return 0; if (a == 1) return 1; if (k < 0) { a = inv (a); k = -k; } uint r = 1; while (k) { if (k & 1) r = mult (r, a); a = mult (a, a); k >>= 1; } return r; } uint gf2m::exp (int k) { //return x^k return exp (1 << 1, k); } uint gf2m::inv (uint a) { if (!a) return 0; return antilog[ (n-1-log[a]) % (n - 1) ]; } uint gf2m::sq_root (uint a) { for (uint i = 1; i < m; ++i) a = mult (a, a); return a; }