#include "codecrypt.h" using namespace ccr; using namespace ccr::mce_qd; #include "decoding.h" #include static uint sample_from_u (gf2m&fld, prng&rng, std::set&used) { uint x; for (;;) { x = rng.random (fld.n); if (used.count (x) ) continue; used.insert (x); return x; } } static uint choose_random (uint limit, prng&rng, std::setused) { if (used.size() >= limit - 1) return 0; //die for (;;) { uint a = 1 + rng.random (limit - 1); if (used.count (a) ) continue; used.insert (a); return a; } } int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, uint m, uint T, uint block_count) { priv.fld.create (m); priv.T = T; uint t = 1 << T; //convenience gf2m&fld = priv.fld; std::vector&Hsig = priv.Hsig; std::vector&essence = priv.essence; std::vector&support = priv.support; polynomial&g = priv.g; //prepare for data Hsig.resize (fld.n / 2); support.resize (fld.n / 2); essence.resize (m); //note that q=2^m, algo. n=q/2, log n = m-1 //retry generating until goppa code is produced. for (;;) { std::set used; used.clear(); //first off, compute the H signature Hsig[0] = choose_random (fld.n, rng, used); essence[m-1] = fld.inv (Hsig[0]); //essence[m-1] is now used as precomputed 1/h_0 for (uint s = 0; s < m - 1; ++s) { uint i = 1 << s; //i = 2^s Hsig[i] = choose_random (fld.n, rng, used); essence[s] = fld.add (essence[m-1], fld.inv (Hsig[i]) ); used.insert (fld.inv (essence[s]) ); for (uint j = 1; j < i; ++j) { Hsig[i+j] = fld.inv ( fld.add ( fld.inv (Hsig[i]), fld.add ( fld.inv (Hsig[j]), essence[m-1] ) ) ); used.insert (Hsig[i+j]); used.insert (fld.inv ( fld.add ( fld.inv (Hsig[i+j]), essence[m-1]) ) ); } } //from now on, we fix 'omega' from the paper to zero. //compute the support, retry if it has two equal elements. used.clear(); bool consistent = true; used.insert (0); //zero is forbidden for (uint i = 0; i < fld.n / 2; ++i) { support[i] = fld.add ( fld.inv (Hsig[i]), essence[m-1]); if (used.count (support[i]) ) { consistent = false; break; } used.insert (support[i]); } if (!consistent) continue; //retry //assemble goppa polynomial. g.clear(); g.resize (1, 1); //g(x)=1 so we can multiply it polynomial tmp; tmp.resize (2, 1); //tmp(x)=x-1 for (uint i = 0; i < t; ++i) { //tmp(x)=x-z=x-(1/h_i) tmp[0] = fld.inv (Hsig[i]); g.mult (tmp, fld); } //now the blocks. uint block_size = 1 << T, h_block_count = (fld.n / 2) / block_size; //assemble blocks to bl std::vector > bl, blp; bl.resize (block_size); for (uint i = 0; i < h_block_count; ++i) bl[i] = std::vector (Hsig.begin() + i * block_size, Hsig.begin() + (i + 1) * block_size); //permute them permutation bp; bp.generate_random (h_block_count, rng); bp.permute (bl, blp); //discard blocks blp.resize (block_count); //TODO permute individual blocks //TODO co-trace to binary H^ //TODO systematic H //TODO systematic G //TODO signature of G return 0; } } int privkey::prepare() { return 0; } int pubkey::encrypt (const bvector& in, bvector&out, prng&rng) { return 0; } int privkey::decrypt (const bvector&in, bvector&out) { return 0; }