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Comment réaliser un systéme de signature électronique
basé sur le cryptosysteme de McEliece

Résumé : McEliece est 'un des plus anciens cryptosysteéme & clé publique connu. Bien qu’il
soit beaucoup moins étudié que RSA, il est remarquable que toutes les attaques connues dont
il peut étre 'objet soient de complexité exponentiellez. Nous présentons dans ce papier le
premier schéma praticable de signature électronique basé sur le principe de McEliece. Nous
prouvons également que, dans le modele de 'oracle aléatoire, la sécurité de notre systeme
peut étre réduite a celle du probléeme de décodage du syndrome et a celle du discernement
d’un code de Goppa permuté d’un code aléatoire. Nous présentons un schéma produisant
des signatures extrémement courtes de 111 bits pour lequel la meilleure attaque connue
nécessite un facteur de travail binaire de 285.

Mots-clé : signature électronique, cryptosysteme de McEliece, cryptosysteme de Nieder-
reiter, codes de Goppa, decodage par syndrome, signatures courtes.
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1 Introduction

The RSA and the McEliece [11] public key cryptosystems, have been proposed back in the
70s. They are based on intractability of respectively factorization and syndrome decoding
problem and both have successfully resisted more than 20 years of cryptanalysis effort.

RSA became the most widely used public key cryptosystem and McEliece was not quite
as successful. Partly because it has a large public key, which is less a problem today, with
huge memory capacities available at very low prices. However the main handicap was the
belief that McEliece could not be used in signature. In the present paper we show that it
is indeed possible to construct a signature scheme based on the McEliece cryptosystem or
Niederreiter’s variant [12].

The cracking problem of RSA is the problem of extracting e-th roots modulo N called
the RSA problem. All the general purpose attacks for it are structural attacks that factor
the modulus N. It is a hard problem but unfortunately subexponential. The cracking
problem for McEliece is the problem of decoding an error correcting code called Syndrome
Decoding (SD). There is no efficient structural attacks that might distinguish between a
permuted Goppa code used by McEliece and a random code. The problem SD is known to
be NP-hard since the seminal paper of Berlekamp, McEliece and van Tilborg [2], in which
authors show that complete decoding of a random code is NP-hard.

All among several known attacks for SD are fully exponential (though faster than the
exhaustive search [4]), and nobody has ever proposed an algorithm that behaves differently
for complete decoding and the bounded decoding problems within a (slightly smaller) distance
accessible to the owner of the trapdoor.

Thus it would be very interesting to dispose of signature schemes based on such (sup-
posedly) hard problems. The only solution available up to date was to use Zero-knowledge
schemes based on codes such as the SD scheme by Stern [19]. It gives excellent security but
the signatures are very long. All tentatives to build practical schemes failed, see for example
[20].

Any trapdoor function allows digital signatures by using the unique capacity of the owner
of the public key to invert the function. However it can only be used to sign messages the
hash value of which lies in the ciphertext space. Therefore a signature scheme based on
trapdoor codes must achieve complete decoding. In the present paper we show how to
achieve complete decoding of Goppa codes for some parameter choices.

The paper is organized as follows. First we explain in §2 and §3 how to achieve a
signature scheme through complete decoding. In the three subsequent sections we present
several practical implementations:

[A] is based on the Niederreiter’s variant of the McEliece scheme (§4). It is equivalent
from the security point of view and much more practical. For the proposed values the
signature length will be 151 bits for a binary workfactor of 283.

[B] is a modified version of the signature scheme in which the complete decoding is repla-
ced by randomized partial decoding (§5). For the same public key it achieves better
security of 285 and a signature length of 150 bits.
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4 Nicolas Courtois , Matthieu Finiasz , Nicolas Sendrier

[C] is an improved version of [B] we consider in §6. We establish an advantageous tradeoff
between signature length and verification time. For the same security the signature
may be of 111 bits and even shorter.

The workfactors given above are not merely based on a best attack we can think of, but
proven lower bounds with respect to a carefully studied famous syndrome decoding problem.
In the Appendix of the paper we show how the security of [A-C] can be provably reduced to
two very precise assumptions, motivated by the current state of knowledge on Goppa codes
and general linear codes. We provide a straightforward, complete proof of security in the
random oracle model that works in both asymptotic and concrete complexity setting [1].
Specific upper and lower bounds on a best attack to forge a signature for [A-C] are given.

2 Signature with McEliece

2.1 The McEliece scheme

Let GF(2) be the field with two elements {0,1}. In the present paper, C' will systematically
denote a binary linear code of length n and dimension k, that is a subspace of dimension &
of the vector space GF(2)". Elements of GF(2)" are called words, and elements of C' are
codewords. A code is usually given in the form of a generating matrix, lines of which form
a basis of the code. A permuted code is a code such that the columns of the generating
matrix has been permuted. The distance between two words of GF(2)™ will be the Hamming
distance, that is the number of positions in which they differ. The weight of a word of GF(2)™
is its Hamming distance to the all-zero word.

The McEliece public-key cryptosystem is based on the difficulty of decoding linear codes,
that is finding the nearest codeword to a given word. The secret key is a binary linear code,
for which a fast decoding procedure for correcting up to ¢ errors is known, and the public key
is a random permutation of the columns of its generating matrix. The encryption process
consists of multiplying the cleartext by the public key and adding a random error pattern of
weight t. The decryption consists of correcting the error by use of the trapdoor fast decoding
procedure (see Table 1).

The security of the system is based on two assumptions:

e decoding an instance of the decoding problem is difficult,
e recovering the underlying structure of the code is difficult.

The first assumption is enforced by complexity theory results [2], and by extensive research
on general purpose decoders [8, 18, 4]. The second assumption received less attention. Still
the Goppa codes used in McEliece are known by coding theorists for thirty years and so far
no polynomially computable property is known to distinguish a permuted Goppa code from
a random linear code.

INRIA
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Secret key: e (C a binary t-error correcting linear code.
¢ a k x k non-singular matrix S,

e a n x n permutation matrix P.
Public key: G' = SGP, where G is a generating matrix of C.
Encryption: m — mG' + e, where ¢ is a random word of weight ¢.

Decryption: y — ®c(yP1)S~1, where ®¢(2) is the (only) element of C at
distance ¢ of z.

Table 1: McEliece cryptosystem

2.2 How to make a signature

In order to obtain an efficient digital signature we need two things: an algorithm able to
compute a signature for any document such that they identify their author uniquely, and a
fast verification algorithm available to everyone.

A public-key encryption function can be used as a signature scheme as follows:

1. hash (with a public hash algorithm) the document to be signed,
2. decrypt this hash value as if it were an instance of ciphertext,
3. append the decrypted message to the document as a signature.

Verification just applies the public encryption function to the signature and verifies that
the result is indeed the hash value of the document. In the case of McEliece or any other
cryptosystem based on decoding the point 2 fails. The reason is that if one considers a
random word of length n, it usually is at distance greater than the decoding capacity t of
the code. In other word, it is difficult to generate a random ciphertext unless it is explicitly
produced as an output of the encryption algorithm.

One solution to the problem is to obtain for our code an algorithm to decode any word
of the space: find an algorithm for complete decoding. It is the object of the next section,
while a different solution will be presented in §6.

2.3 Complete decoding

Complete decoding consists of finding a nearest codeword to any given word of the space.
Thus we decode not only words within the spheres of radius ¢ around the codewords, but
also any word not covered by these spheres.

The first step towards complete decoding is to decode ¢t 4+ 1 errors instead of ¢t. The
simplest way to do this is to change a random bit in our word and then try to decode it.
Suppose we have a word that differs in at least ¢ + 1 different positions from any codeword.

RR n~4118
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Figure 1: from bounded decoding to complete decoding

We change one of its bits. If it can be decoded this means that the bit we changed was one
of the ¢ + 1 bits of difference with a nearest code, as only then the ¢ errors left could have
been decoded with our bounded decoding algorithm. If it can’t be decoded it means the bit
we changed wasn’t one of the different bits and we just have to try again changing another
bit.

If we try to flip every bit in turn, we are sure to decode any word with ¢+ 1 errors. If we
want to correct t+ 2 errors we can do exactly the same changing two random bits each time.
With this method, for any §, we can decode words with ¢+ ¢ errors, except that the greater
6 is, the longer the decoding will be, as we will have to try a lot of different combinations of
6 random bits. If n is the length of the word containing ¢ + § errors we want to decode the
probability of success for each try is:

(‘3")

()

which grows exponentially with §. Therefore, with a large ¢ the average number of tries of
our algorithm will be intractable.

It is important to note that with this algorithm we are able to find, for a given word, a
codeword at a distance at most ¢ + § (if there exists one), but it isn’t a true decoding, as
the word we get isn’t necessarily a nearest codeword.

In the next chapter we evaluate &, it should be small and such that any word can be
decoded. The maximum distance to a given linear code is called the covering radius, and
it is usually hard to determine it exactly. In fact, it is an old and difficult open problem
for Goppa codes. However, we are not interested in its precise value: consider the smallest
integer &,,;, for which the volume of a sphere of radius ¢ + §,,in is greater than 27~*. This
value is only a lower bound for the covering radius but as we will see, in some cases it is
good enough in practice. Our goal is not exactly to achieve the complete decoding, but to
be able to find a codeword at a distance less than ¢t + &4, for all codewords except for a
negligible number. We call it almost complete decoding.

P =

INRIA
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3 Finding the proper parameters

The parameters of the problem are: the length k of the messages (dimension of the code),
the length n of the words (length of the code) and the maximum number ¢ of errors the code
can correct. These parameters affect all aspects of the signature scheme: its security, the
algorithmic complexity for computing a signature, the probability to obtain a signature for
any document... We start by exploring the reasons why the classical McEliece parameters
are not acceptable and on what is that we wish to obtain.

3.1 Need for new parameters

With the classical McEliece parameters (n = 1024, k = 524, t = 50) we obtain a value for

6min of:
5046
> (10.24) > 2“’24—524} =61
K3

Smin = min {(5 €N
i=0

This would lead to a probability of success for our extended decoding of:

(111)
_ \e61) ., 9—222
P = (1024) ~2

61
It by far too little and moreover the value of 61+50 of 6, + t is probably smaller than
the real value of the covering radius. It seems therefore necessary to use other parameters,
especially parameters for which 8,,,;, would be smaller.

3.2 Parameters of Goppa codes

Binary Goppa codes are subfield subcodes of particular alternant codes [10, Ch. 12]. For a
given integer m, there are many (about 2!™/t) t-error correcting Goppa codes of dimension
n —tm and length n < 2™. Choosing n < 2™ is not interesting except for tuning the tradeoff
between key size and security. Thus in practice, we will consider t-error correcting Goppa
codes of length n = 2™ and dimension k = 2™ — ¢tm. The number of Goppa codes with such
parameters is following [9, page 97] equal to the number of monic irreducible polynomials
of degree t over GF(2™), that is approximately 2¢™ /¢.

3.3 Optimizing parameters

In this section we are looking for parameters which lead to a small é,,;, and for which the
average number of tries necessary to decode a word is small. The theoretical number of tries
Y to find a particular codeword at distance ¢ + 8,4y, is the inverse of the probability P of
choosing a good set of random bits. As there might be more than one such codeword (say
an average of o) the average number of tries will be ¥ /0. The average value of ¢ is close to
(,.4° )/2"7*. This number turns out to be consistent with experimental values. Various

t+Omin
size of parameters, decoding cost and cryptanalysis cost are given in Table 2.

RR n~4118
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length | error weight cost failure binary workfactor
n=2"{ t [bmin| X/o o | rate(® cc® LB®)
2048 8 2 41197 1.1 0.35 2510 2509
(211 9 3 374238 | 17.3| 2725 253.1 2501
10 3 | 3764444 1.3 | 0.29 2593 2570

16384 8 2 40428 73.7 | 27106 2644 2670
(214) 9 2 364078 6.7 | 2796 2735 2764
10 3 3643228 | 702.9 | 2—1014 276.6 2754

32768 8 2 40374 | 2954 | 271 2066.6 2723
(219) 9 2 363478 | 26.8 | 2738 278.3 282.8
10 2 3636006 2.2 0.12 286.6 293.0

65536 8 2 40347 | 1182.7 | 21706 2068.5 2781
(216) 9 2 363179 | 107.5 | 27155 2832 2892
10 2 3632401 89| 2713 289.8 21003

(a) estimated probability of not being able to decode ~ e~
() derived from [4] and [8] and divided by o

Table 2: Cost for decoding

3.4 Secure parameters

A fast bounded decoding algorithm can perform about one million decoding in a few mi-
nutes!, so if we want to have an algorithm able to compute a signature in a decent time
we see that ¢ should not be more than 10. However for the codes correcting such a little
number of errors we need to have very long codewords in order to achieve good security.

The two last columns of Table 2 show the binary workfactors for both the Canteaut-
Chabaud attack [4] and the Lee-Brickell attack [8] on McEliece cryptosystem. We assume
that an acceptable security level is of 28¢ CPU operations, corresponding roughly to a binary
workfactor of 286. Therefore, in our signature scheme, we need a length of at least 2'° with
10 errors or 26 with 9 errors.

Though it is slightly below or security requirement, the choice (2!¢,9) is better as it is
about 8 times faster and a negiglibible probability of decoding failure of 2713 instead of
0.12 for the second choice.

3.5 First signature scheme based on decoding

The secret key of our algorithm is a randomly selected Goppa code C' with n = 65536,
k = 65392, such that we are able to decode it for t = 9 and 6,,;, = 2. The public key is the
permuted version G’ of the generating matrix G of C.

Lour implementation performs one million decoding in 5 minutes, we estimate that it can be reduced by

a factor 10

INRIA



How to Achieve a McEliece-based Digital Signature Scheme 9

We compute signatures as follows:
e hash the document into a word of n bits,

e use the complete decoding algorithm with 2 random bits to find a codeword at distance
11 from the hashed value

e get the k bits long message corresponding to this codeword and use it as signature

To check the signature we need to recode the k-bits long message using the public ge-
nerating matrix G, hash the document using the public hash function and compare the
two words. The signature will be considered as valid if they differ on at most 11 out of n
positions.

This signature scheme achieves good security, but the signatures have 65392 bits, about...
500 times what we are looking for.

4 Using syndromes

In order to get a practical signature scheme we will switch to the Niederreiter version of
McEliece cryptosystem summarized in Table 3. Instead of using a generating matrix of C
it uses a dual representation in terms of so called parity check matrix. A (n — k) X n binary
matrix is called a parity check matriz of C if the code C' is exactly the set of codewords x
satisfying Hz? = 0. The syndrome of any word y in GF(2)" is equal to Hy”. It is used
to detect and correct errors. Indeed, decoding consists of finding a word with a minimum
number of modifications that would give a all-zero syndrome. Due to the linearity of the
syndrome it amounts to adding to the received word an error pattern of the smallest weight
which gives this very syndrome Hy”. Thus finding a word of the smallest weight (that will
be actually <t + §) that has a given syndrome, is perfectly equivalent to decoding.

Secret key: e (' a binary t-error correcting linear code.
e a (n— k) x (n — k) non-singular matrix S,

e a n X n permutation matrix P.
Public key: H' = SHP, where H is a parity check matrix of C.
Encryption: m — H'm7, the message m is a word of weight ¢.

Decryption: y — U (S~1y)P, where ¥ (s) is the (only) word z of weight ¢
and of syndrome s.

Table 3: Niederreiter cryptosystem

To compute a signature, instead of hashing the document into a word of length n, we hash
it into a much shorter n — k bits syndrome. Instead of decoding some word of length n with a

RR n~4118
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given syndrome, the signature is computed as the small weight error pattern corresponding
to this syndrome. If, as in our cases, n — k < n it results in a much less cumbersome
signature scheme with a substantial reduction in the speed, hashed message size, signature
length and the public key size.

4.1 Implementing syndrome signatures [A]

In the Niederreiter version the signature will be a word of weight 11 and length 65536
(instead of a message of length 65392). We call [A] this precise instance of the signature
scheme.

To sign a document one just has to decode a random syndrome obtained by hashing.
Following §3.4 and Table 2 we evaluated the time for computing one signature on a 1 Ghz
PC to be of 10 seconds. Then the signature of weight 11 is given in a compressed form.
The naive method consists of writing the indexes of the 11 bits: as the word is 216 bits long
this would take 11 x 16 = 176 bits. A better compression is achieved if we number all the
words of weight 11 and use the corresponding number z as a signature. The word with 1’s
at positions 43 < 2 < ... < iz is encoded as:

m:(n_til)+(Z:ilz>+...+(nzit)+1. (1)

The length of signatures is exactly [log, (°3*¢)] = 151 bits.

The verification will first recover the word of legth 11. Fast decoding of (1) is achieved
by precomputing and storing the binomial coefficients in ¢ binary trees. It takes ¢m integer
operations, i.e. less than 1 us. Then we compute the syndrome which consists of adding
only 11 columns of the parity check matrix and takes less than 0.1us (see §6.1). Excluding

hashing, the whole verification is expected to take less than 1 us.

4.2 Attacks on the signature length

Having such short signatures enables attacks independent on the strength of the trapdoor
function used, and are inherent to the commonly used method of computing a signature
by inversion of the function. This generic attack runs in the square root of the exhaustive
search. Let F' be any trapdoor function with an output space of cardinality 2". The well
known birthday paradox forgery attack computes 2"/? hash? values MD(m;) for some chosen
messages, and picks at random 27/2 possible signatures. One of these signatures is expected
to correspond to one of the messages.

With our parameters the syndromes have a length of 144 bits and the complexity of the
attack is the complexity of sorting the 2'4/2 = 272 values which is 272 x 72 x 144 ~ 2%
binary operations. One might consider this attack as a threat to our system, but it is not, as
the required memory is about 272 x 72 bits i.e. more than 10! Terabytes. It is possible to

2MD denotes a cryptographic hash function with output of r bits

INRIA



How to Achieve a McEliece-based Digital Signature Scheme 11

avoid the above attack and achieve even shorter signatures, in §6 we propose such a method
and compare with another known solution.

5 Improving security workfactor

A relative performance of McEliece-based signature schemes should be evaluated with res-
pect to their main drawback which is the public key size. Our goal is to achieve better
performance while the public key size remains the same. The present section improves the
security against inversion attacks on the trapdoor function, the following section will im-
prove on signature length. In both we use the same code as in [A] with m = 16, ¢t = 9,
n =2" and k =n — mt.

5.1 Improving security against inversion

Let H' be the (public) parity check matrix of Niederreiter signature scheme called [A]. Let
W (2™, < w) C GF(2)?" be the set of all codewords of the weight at most w. We define two
functions based on H' with a different domain:

Hy W™, <t+6min) — GF2)™, Hyi ™ o HT

Hp:W(2™,<t) - GF(2)™, Hy Y o H'2T

The function Hg, is precisely the trapdoor function used in [A] signature scheme: o =
H ;'[MD(m)]. The value 6,,;,, have been chosen so that it is invertible except for a negligible
number of syndromes. The inversion is slow.

The second function Hp is invertible only on it’s range, using standard decoding of the
Goppa code, which is quite fast. Let H,}l : GF(2)™ — W(2™,< t) U L be a partial
inverse that returns L if it fails. In [A] we do an (almost) complete decoding, in [B] we use
randomized incomplete decoding. For a given r € IN we try to decode 2" times as follows:

o« 1
for all(T € {0,1}") do
it Hy! MD(m|[T)) # 1)

o — Hz'MD(m||T)] || T
break

}

return o

Table 4: The randomized McEliece Signature Scheme [B]

RR n“4118
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The density of the decodable syndromes is
2mt

i
> (3)
After trying all possible 2¢ values for T, the chance it still doesn’t work is:

(1-p)?
In our example r = 24 we get a probability of success for [B] of 1 — 2796 and for r = 25
it is 1 — 27133, For r = 24 the compressed size of signatures in [B] is:

t

r+ logy (Y (7:“) )] =150 bits.

=0

6 Short signatures with McEliece

For any signature scheme there is an easy security preserving tradeoff between signature
length and verification time. One may remove any h bits from the signature if one accepts
exhaustive verification in 2" for each possible value of the h missing bits. In the case of
syndrome-based signature, one can do much better. As the signature consists of an error
pattern of weight ¢, one may send only ¢t — 1 out of the ¢ errors. The verifier needs to decode
the remaining error and this is much faster that the exhaustive search. More generally
we are going to show that concealing a few errors (between 1 and 3) remains an excellent
compromise as summarized in Table 5 below.

6.1 Cost of a verification

Let s denote the hash value of the message and z denote the error pattern of weight ¢
such that HzT = s. As z is the signature, we can compute y = HzT by adding the ¢
corresponding columns. The signature is accepted if y is the equal to s. The total cost of

this verification is ¢ column operations®.

6.2 Decoding one error

We assume now that instead of z, the signature is a word u of weight ¢ — 1 such that u + 2
has weight one. If y = s+ Hu” is a column of H then s is the syndrome of a word of weight
at most ¢, and the signature can be accepted.

Computing y requires ¢ — 1 column operations, finding the index of y should take no
more than one column operation if the columns of H are properly stored. If the index does
not exist the verification fails, else it works. The total complexity is ¢ column operations,
exactly the same as for a normal verification.

3In this section we will count all complexities in terms of column operations, one column operation is
typically one access to a table and one operation like an addition or a comparison

INRIA
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6.3 Decoding two errors

The word u used as signature has weight t — 2. Let y = s + Hu”? and let = be the word of
weight 2 such that Hz? = y. We are looking for two columns of H whose sum is equal to
y. All we have to do is to add y to any column of H and look for a match in H. Again if
the columns of H are properly stored, the cost is at most 2n column operations.

This can be improved as the signer can choose which 2 errors are left to verifier to correct
and leave in priority the positions which will be tested first, this divides the complexity in
average by t.

6.4 Decoding more errors

In general, to correct w errors, we put y = s + Hu” and we need to compute the sum of
y plus any w — 1 columns of H and check for a match among the columns of H. Proper
implementation will cost at most 2(w'll) column operations.

Again, if the signer leaves the set of w errors which are tested first, the average cost can
be divided by ().

remaining cost (@) of signature
€rrors verification length
0 t 9 150 bits
1 t 9 137 bits
2 2n/t 214 1 124 bits
3 2(2) / (é) zi; 111 bits
4 2(3) /(%) 2 98 bits
5 2(7) /(1) | 2% | 84 bits
(

~ 4 to 8 CPU clocks).
Table 5: Tradeoffs for the 9-error correcting Goppa code of length 216
If we allow verification times of few hours, it is possible to propose a scheme with signature

length of 98 bits. Moreover, with variable length encoding, we may achieve an average length
of 92 bits with a security binary workfactor of 285,

6.5 Proposed short signature scheme [C]

We call [C] the signature scheme with w = 3. The signatures have 111 bits and the verifi-
cation takes less than one second.

6.6 Related work

It seems that up till now the only signature scheme that allowed such short signatures was
Quartz [14] based on HFE cryptosystem [13]. It is enabled by a specific construction that

RR n~4118
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involves several decryptions in order to avoid the birthday paradox forgery described in 4.2
that runs in the square root of the exhaustive search. This method is apparently unique to
multivariate quadratic cryptosystems such as HFE and works only if the best attack on the
underlying trapdoor is well above the square root of the exhaustive search [13, 14]. Such is
not the case for the syndrome decoding problems.

7 Conclusion

We demonstrated how to achieve digital signatures with the McEliece public key cryptosys-
tem. We propose 3 schemes that have tight security proofs in random oracle model. They
are based on the well known hard syndrome decoding problem that after some 30 years of
research is still exponential. The following summarizes the concrete security of our schemes
compared to some other known signature schemes.

base cryptosystem RSA ElGamal EC HFE McEliece
signature scheme RSA DSA ECDSA | Quartz §2 [A] [B] [C]
data size(s) 1024 | 160/1024 | 160 100 | 65536 | 144 144 144
security
structural problem factoring DL(p) Sechay | HFEv- Goppa < PRCode
best structural attack 2102 2102 ) > 297 21 2t T i T ot®
inversion problem RSAP DL(q) EC DL MQ R-SD
best inversion attack 2102 280 280 2100 283 283 285 285
an attack on the ) 980 980 280 ) 985 985 985
signature scheme itself
efficiency
signature length 1024 320 162 128 [ 65392 | 151 [ 150 [ 111
public key [kbytes] 0.2 0.1 0.1 71 1152
signature time 1 GHz 9 ms 1.5 ms 5 ms 15s 10s
verification time 1 GHz | 9 ms 2 ms 6 ms 40 ms | 32 ms | <1 pus | 1s

Table 6: McEliece compared to some known signature schemes

The proposed McEliece-based signature schemes have unique features that will make it
an exclusive choice for some applications while excluding other. First, it seems difficult to
build a cryptosystem based on McEliece and avoid it’s major drawback; the public key size.
However there are very few security schemes for which the security is provably reduced to
(apparently) exponential problems. Therefore if there is no major breakthrough in decoding
algorithms, it should be easy to keep up with the Moore’s law.
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Signature with McEliece has either faster verification than any known signature scheme

[A,B], either it gives the shortest known digital signatures with 111 bits for [C], and possibly
even 98 bits, as shown in Table 5.
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8 Appendix - Security Proofs

In this section we give relative proofs of security for the proposed schemes [A-C]. The proofs
are extremely simple using the random oracle model and two basic assumptions concerning
hardness of general purpose decoding and pseudo-randomness of Goppa codes. Usually
the security claims and proofs are formulated either in terms of asymptotic security or
Bellare-style concrete security [1] with fixed workfactors e.g. 28°. For most cryptosystems
asymptotic complexity is defined in terms of polynomial or not algorithms. Not polyno-
mial is meaningless when substituted with given parameter values. However in the case of
McEliece-derived cryptosystems, but also for the elliptic curves, the security may be formu-
lated in terms of exponential complexity. Indeed for these two cases there is hope that they
might be really as secure, while many other public key cryptosystems prove sooner or later
subexponential. We will formulate our asymptotic claims in terms of precise exponential
bounds on workfactors extrapolated from known algorithms. Thus we obtain both concrete
and asymptotic lower bounds on security of our signature schemes [A-C]. We also obtain a
tight security bound on [A-C] when substituted with the minimum workfactors of the all
known attacks on the two problems.
First we explain why Goppa codes are good codes and what does it mean.
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8.1 Indistinguishability of permuted Goppa codes

Definition 8.1.1 (Distinguishers) A T-time distinguisher is a T-time Adersary, i.e. a
probabilistic Turing machine, such that it takes a given F as an input and outputs AY equal
to 0 or 1. The probability it outputs 1 on F with respect to some probability distribution F
is denoted as:

PriF « F: AF =1]

Definition 8.1.2 ((T,¢)-PRC) Let A be a T-time distinguisher. Let RND(n,k) be the
uniform probability distribution of a random linear (n,k)-code over GF(2). Let F(n,k) be
any other probability distribution. We define the distinguisher’s advantage as:

AdvEEC(4) Y | Pr[F — F(n,k) : A¥ = 1] — Pr[F — RND(n, k) : A" =1]|.

We say that F(n, k) is a (T,e)-PRC (Pseudo-Random Code) if we have:

Max T-time A AdvERC(4) <e.

Design Criterion 8.1.3 (PRC trapdoors) A good cryptographic trapdoor function based
on codes should be a PRC.

Let Goppa(2™,2™—tm) be a probability distribution of a random permuted (2™, 2™ —tm)
Goppa code over GF'(2). Following [9, page 97] the number of (non-permuted) Goppa codes
is equal to the number of monic irreducible polynomials of degree t over GF'(2™) which gives
about 2™ /t. The exact number of non-equivalent Goppa codes is not known. Following the
current state of knowledge on identifying permuted Goppa codes we conjecture with a good
margin of improvement that:

e the number of non-equivalent Goppa codes is at least 20¢=1™ [7]

e solving CODE EQUIVALENCE PROBLEM [15] is in at least Min(n,n — k)? [16].

Conjecture 8.1.4 (Indistinguishability of permuted Goppa codes) If a Tgoppo-time
adversary distinguishes a random permuted Goppa code with an advantage

c
Advgon;)pa@mﬂm—tm) > 1/2
then the complexity is conjectured to be at least:
TGoppa = g(t=1)m Min(n,n — k)3.

A more precise evaluation is not necessary because as we will see later the number will
be big enough.
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8.2 Hardness of decoding

It is less obvious to give an estimation of the hardness of the syndrome decoding problem for
a random code. Though all the known algorithms are exponential, they are faster than the
exhaustive search and the evaluation of the best complexity for known attacks on a given
instance is non-trivial.

There are several versions of the decoding problem:

Definition 8.2.1 (Random Syndrome Decoding R-SD) Find a word of a small weight
< 't that gives one out of a list of random syndromes.

Definition 8.2.2 ((One) Decodable Syndrome Decoding D-SD) Find one word of a
small weight < t that produces a given randomly selected decodable syndrome.

The algorithms are usually made for D-SD. The situation is slightly different in [A], [B]
and [C]. The adversary that wants to forge a signature may produce as many messages as
he wants, and then try to decode one of the syndromes. All of them will be random as
they are produced by a cryptographic hash function. Therefore solving R-SD allows to forge
signatures.

R-SD and D-SD are different problems. It is obvious that for a fixed code the R-SD
difficulty decreases with ¢, while for D-SD it seems to increase. The relationship between
the 2 problems is not obvious. Let p ~ (%) /2"~* be the average number of words of weight
< t that correspond to a random syndrome. Any attack on D-SD is conjectured to give an
algorithm for R-SD with

Conjecture 8.2.3 (R-SD vs D-SD)

D-SD(n,k,t) D-SD(n,k,t
R—SD(n, k, t) 6 (n7 ) ), (n7 b ) X
VP P

Indeed if p > 1 and as the decoding algorithms have important brute search subcompo-
nents, the chance that they succeed should be multiplied by p and the complexity decreases
by L.

P

If p < 1 we must try the whole algorithm 1/p times in order to find a decodable syndrome.
Still thare are good chances that we may also benefit from a birthday paradox-like tradoff
between the number of syndromes to decode and the number of guesses giving rather %.

Following many years of research on general algorithms for decoding [2, 4, 6, 8, 18] we
conjecture that:

Conjecture 8.2.4 (Hardness of Syndrome Decoding) All the algorithms for solving
D-SD(t) for a randomly selected (n,k)-code are exponential both on average and in worst
case with a complezity of

Tp_sp > 2%™e(x)

For some a > 0 and some function e : [0,1] — [0, 1] that varies from one attack to another
2, 4, 6, 8, 18].
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We note that the above conjecture does not allow precomputation on the code and it
may be easier in this case as demonstrated in §6.
A similar conjecture seems also plausible for R-SD if p is not too big.

8.3 Lower Bounds on Security

We assume that the permuted Goppa code used in our signature scheme (TG oppq,
i.e. it cannot be distinguished from a random code with an advantage greater tha
adversaries running in time < Tgoppa-

We assume that the corresponding instance of R-SD cannot be solved with probability
greater than % by an adversary running in time < Tg_gp.

H-
n % for all

Theorem 8.3.1 (Provable Security of [A] and [B]) Any T'-time algorithm that is able
to compute a valid pair message+signature for one of the schemes [A] or [B] with a probability
> % satisfies:

T > Min (TGoppaa TR—SD) -

Proof. First we establish the fact for [A]. We suppose that such an adversary exists and
computes a valid pair (m, o) with

o = H ' [MD(m)].

We use a well known random oracle technique. It assumes that MD is a random function,
and that the output of MD is random for each new entry. *

We assume that a T-time adversary is able to forge signatures with a probability > % We
may assume without loss of generality that the adversary only produces correct signatures,
if any. Otherwise we simply add the public signature verification to the adversary. Since the
output of MD is supposed to be random, an adversary able to give a valid signature for some
message must have computed the hash function of the message, otherwise he cannot know
that the signature is correct. Still as it is random, he cannot distinguish between outputs
of MD. When we substitute it successively by several random syndromes to decode. If he
manages to forge a signature, he must decode one of the given syndromes and it is exactly
the R-SD problem as defined in 8.2.1.

If the code used is a random code, we have T' > Tg_sp. Otherwise, we assume that
T < Tr_gp for a randomly selected permuted Goppa code. Using our adversary gives an
algorithm in time 7' distinguishing between a random code and the permuted Goppa code
with an advantage very close to % Indeed, it will decode a random instance of a permuted
Goppa code with probability %, and it has a negligible probability to do the same for a
random code. Actually this probability is at most m Thus T > TGoppa-

Thus either T > Tgr_sp or T > Tgoppa, and T > Min (Tcoppa, TR—5D)-

The proof in the case [B] is exactly the same. O

4In theory this approach is incorrect in asymptotic sense [3] if MD is a publicly known function ensemble.
For this reason in [17] proofs in the random oracle model are called arguments. Still it is believed that
schemes proven in random oracle model are correct and secure [17]
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Theorem 8.3.2 ([C] is provably as secure as [B]) Any T¢-time algorithm that is able
to compute a false signature for the signature scheme [C] with probability % is able to compute
a signature for [B] with with probability 1 and

Tp <Tc + (wil)/<wt—1)

Proof. We transform it into an algorithm that forges the signatures for [B] with the time
increased by the verification time of the [C] that recovers a complete signature of type [B]
which is at most the time we obtained in §6.

For values of w used in practice (,",)/(,’,)# is negligible compared to Tg_sp and we
have also:

Corollary 8.3.3 If w is small, [C] is provably as secure as [B].
If we combine the theorems 8.3.1 and 8.3.2 we have:

Theorem 8.3.4 (Provable Security of [C]) Any T time algorithm that is able to com-
pute a false signature for the signature scheme [C] for a given parameter w and with a
probability > % satisfies:

TzMin(TGoppaaTR—SD)_< . )/( ; )

w—1 w—1

We note that an algorithm that solves R-SD gives also an upper bound on the security
of the cryptosystem as it allows directly to compute signatures in Tr_gp. Thus we have:

Theorem 8.3.5 (Exact security of [A-B]) The minimum workfactor T necessary to forge
signatures in schemes [A-B] with a probability > % is in the range:

Tr—sp > T > Min (Tgoppas Tr—5D)

Theorem 8.3.6 (Exact security of [C]) For [C] we have

n t
Tr_sp >T > Min (Tgoppa, LTr— —
r—sp > T > Min (TGoppa, Tr—sD) (w—l)/(w—1>
Corollary 8.3.7 (Tight security of [A-C]) If (as it is currently believed) Tgoppe > Tr—sD
and for the case of [C], if also (wﬁl)/(wt_l) is small compared to Tr_sp, the security of
schemes [A-C] is exactly
T=Tgr sp
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8.4 Concrete security of [A], [B] and [C]

The code used in [A], [B] and [C] is the same with with m = 16,t =9, n = 2™, k = n — m¢.
The only difference is that we decode ¢ = 9 errors in [B] and [C] and ¢ + 6,5, = 11 for [A].

Following 8.1.4 above we have: Tgoppa > 20" V™ - Min(n,n — k)® ~ 2149,

We evaluated the workfactor needed for decoding our pseudo-random codes D-SD(216,216 —
144,9) and D-SD(2'6,216 — 144,9) with the best known algorithm due to Anne Canteaut
and Florent Chabaud [4]. The best variant of the algorithm gives a binary workfactor
Tp sp(9) =~ 27 and Tp_sp(11) =~ 2°°. Thus following the Conjecture 8.2.3 for which a
different bound is smaller, depending whether p > 1 or not, we get:

276 85 290 83
Tr_sp(9) > — =2 and Tr sp(11) > ~ 2
©) NI (1) Pt+6pmin

We have Tgoppe > Tr—sp in both cases as with a good margin. As long as it remains
true and following Theorem 8.3.7 the lower and upper bound on the security of the signature
schemes [A], [B], [C] coincide and give:

WFi4 = Tr-sp(11) = 2%

WEp =WkFq = Tr sp(9) = 285
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