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Preface

In the beginning of cryptographic research the main intention was to secure
the communication between two parties against adversaries. Nowadays dif-
ferent needs for cryptographic concepts have moved into the focus as well.
The Internet has not only become a resource of information and space for
social interaction, but serves as well as a business platform. For example,
anyone wishing to order some product paying the bill by bank transfer may
choose to do so via Internet. Such kind of business, called e-Business, has
to be secured. However, digital communication in general and the Internet
in special lack of equivalents to former methods to secure and authenticate
transactions like envelopes and handwriting. This causes several security
problems, which are quite hard to resolve by early cryptographic means
because of scaling problems.

Until the year 1977 two parties wishing to communicate secretly were
forced to agree on a common secret in advance or to establish an exclu-
sive communication channel. This concept called symmetric cryptography
was mainly realized for military operations and did not find its way to ev-
eryday life. However, in 1978 new interesting cryptographic systems were
presented, e.g., the RSA and the McEliece scheme. In both schemes it is
not longer necessary to agree on a common secret, but only the recipient
of the message has to keep a secret. Being assured by a so called public
key that the receiver knows a certain secret (for example the factorization
of a large number like in the case of RSA) anyone wishing to send her a
message may do so without the need and the possibility of recovering the
secret. Instead, he might look up the public key in a secured database.
Because of the asymmetric aspect of the need to keep a secret, this kind
of cryptography is called asymmetric cryptography or (as we will do in the
following) public key cryptography. The concept of public key cryptography
proved extremely useful to solve problems coming up with the possibilities
of the Internet, realizing not only secure communication but for example
digital signatures or digital authentication protocols as well. Nevertheless,
public key cryptography allows a much wider range of applications, such as
key exchange protocols, electronic cash, eVoting or electronic gambling.

The cryptographic context

All public key cryptosystems employed to secure digital communication to-
day are based on the hardness of some problems in number theory. Roughly
saying this means that anybody able to break RSA by solving the prob-
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lem of factorizing large integers or by determining discrete logarithms could
get around many security mechanisms of modern digital communication.
This would cause a tremendous shock to the worlds economy and security.
Even if no one has come up with any method of doing so with feasible
resources today, P. Shor showed how to do so in a futuristic scenario. Em-
ploying not classical but quantum computers one could use his algorithm
[42] to break number theoretic cryptosystems like RSA with feasible time
resources. Fortunately, today no one is believed to be in the possession of
quantum computers, but research is working under pressure and physicists
claim that quantum computers of considerable size could be build within
the next decades (see e.g. [9] and [25]).

While provably secure two-party communication can be realized in an
idealistic scenario by securing a communication channel using quantum me-
chanics (compare e.g. [2]), it is still strongly discussed how to do so in
multi-party scenarios like the Internet. The threat of quantum computers
has reinitialized the research on alternatives for public key cryptography
based on number theory. Fortunately, a long known but in comparison to
RSA poorly studied alternative exists - the McEliece scheme. Unlike other
candidates for public key cryptosystems its concept has resisted all attacks
and is easy to realize even with limited computing power, which could turn it
very useful for handheld devices with limited power supply. As the McEliece
PKC is based on error correcting codes, its security is related to the hard-
ness of the general decoding problem from coding theory, which presumably
cannot be solved more efficiently with quantum computers than with nor-
mal ones, as it is NP-hard [3]. Furthermore, the fact that the McEliece
scheme has variants which meet the cryptographic notion of CCA2-security
[26] and that it can even be used to build signatures [8] make it especially
interesting. Another strong point of cryptography based on coding theory
is that the concept is not limited to public key cryptography. For example
one can build (fast) hash functions and random number generators using
the principles of coding theory (see [1], [12]). Such concepts can not only be
used for symmetric cryptography, but also for building CCA2-secure public
key cryptosystems. However, one of the main drawbacks and the reason
why the McEliece scheme was never considered for use in real life is the size
of the public key.

State of the art in code based cryptography

The public key size of the McEliece cryptosystem is due to the state of
the art algorithms for solving the general decoding problem for binary lin-
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ear codes. While even an improvement of the initial algorithm by McEliece
proposed by Lee/Brickell [27] was not able to attack the parameter sets orig-
inally proposed, the variant of Sterns algorithm by Canteaut and Chabaud
[7] succeeded. As a consequence, parameter sets for the McEliece cryptosys-
tem had to be modified, resulting in key sizes of 88KByte to 130 KByte.
These parameter sets have not changed since 1995, and it seems not prob-
able that one can achieve a considerable improvement in the running times
of the mentioned algorithms. Nevertheless, there exist different approaches
like iterative decoding [13] and statistical decoding [23] to solve the gen-
eral decoding problem. Even if these concepts do not affect the McEliece
scheme today, it is an important question whether these algorithms may
be improved and thereby enforce a new change of parameter sets for the
McEliece cryptosystem.

While the public key size of the original McEliece scheme will most prob-
ably get even larger, reducing the public key size by modifying the original
system could lead way to a practicable and accepted cryptographic scheme.
The error correcting codes to generate the public key for the McEliece cryp-
tosystem are Goppa codes. Many attempts to replace Goppa codes by dif-
ferent codes as e.g. GRS codes [35] or Reed-Muller codes [43] were proven
to be insecure ([44] and [34]), but the security status of other proposals is
still unknown.
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Abstract

In this thesis we view the statistical decoding algorithm, which tries to
solve the general decoding problem as well as the variants of the McEliece
cryptosystem based on Gabidulin codes.

The first part of the thesis is dedicated to the general concept of public
key cryptography on the basis of coding theory and the security of the un-
derlying problems. Thus after presenting the basic principles, we study the
proposal of statistical decoding (which can be seen as a variant of iterative
decoding). For a given code, the statistical decoding algorithm precomputes
many low weight check vectors and is afterwards able to correct a certain
fraction of erroneous codewords in constant time. This can be a great ad-
vantage if there are many erroneous messages to decode.

Unfortunately, in the original paper [23] an analysis of the precomputa-
tion phase is not included and in experiments given bounds for the space
complexity of the statistical decoding algorithm turned out to be too opti-
mistic. We give a robust space complexity analysis of the proposed algorithm
and deduce new theoretical bounds. In experiments, these new bounds proof
to be more accurate than the previous ones, corroborating some simplifying
assumptions in our analysis. Further, we analyze the time complexity of the
precomputation phase and draw the conclusion that it is much higher than
estimated.

A main flaw of the initial algorithm is the fact that most of the informa-
tion obtained during the precomputation phase is discarded. We improve
the statistical decoding algorithm by taking more information out of the pre-
computation. This results in an algorithm with better success probability as
the initial one. Nevertheless, even this improved algorithm turns out to be
slower than a single run of the Canteaut and Chabaud algorithm. We thus
conclude that for the McEliece PKC the parameter sets currently proposed
remain secure. However, following our approach, further improvement of
the statistical algorithm seems to be possible, especially if one could achieve
a significant speed-up of the precomputation. Further, the presented meth-
ods could be combined with the iterative decoding approach. Therefore, the
question if there are better attacks on the McEliece cryptosystem than the
existing ones remains open.

The second part of the thesis is dedicated to Gabidulin codes and their
application to cryptography like in the GPT proposal from EuroCrypt’91
[18] and its variants. Gabidulin codes use rank distance instead of hamming
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distance and thus can be used to correct pattern errors in communication
channels. We present a new error correction algorithm for Gabidulin codes,
which can be extended to interleaved Gabidulin codes. We show that this
extension allows to correct errors in rank metric up to the amount of re-
dundancy in a large number of cases, which is far beyond the initial error
correction bound. Consequently our result is analogous to the one of Ble-
ichenbacher, Kiayias and Yung for GRS codes [6].

The question whether Gabidulin codes can be used for cryptographic
applications was strongly discussed in the last years, but remained unsolved.
The GTP proposal by Gabidulin, Paramonov and Tretjakov is promising,
as the general decoding problem in rank metric is more difficult than in
hamming metric [24]. Thus, this variant offers more resistance to general
decoding attacks than the McEliece scheme while having a much smaller
public key size. However, the GPT cryptosystem was attacked by Gibson in
’95 and ’96 ([20], [22]), who showed how to recover the secret key for initial
parameter sets. We gather up the sequently proposed strategies to prevent
an attacker from recovering the secret key, which are highly interesting as
most of them are applicable to all code based cryptosystems and can (but
do not necessarily) lead to secure public key cryptosystems. Further, we
analyze the effectiveness of these strategies in the case of GPT under two
different aspects: The security of the ciphertexts and the security of the
secret keys. First, we show how to take profit of our new error correction
algorithm for Gabidulin codes, to attack ciphertexts of cryptosystems using
Gabidulin codes in polynomial time. In a second part, we show how to
identify the structure of the underlying Gabidulin code in the public key
and develop a polynomial time key recovery attack.

Structure of the thesis

The thesis is structured as follows: We give an introduction into basic prin-
ciples of cryptography on the base of error correcting codes first. Then, we
highlight the underlying problems in coding theory and discuss the statisti-
cal decoding algorithm. In the last major part, we analyze Gabidulin codes
and show why they cannot be used for secret communication. At the end,
we make a resume and point out open problems and future fields of research.
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Überblick

In dieser Arbeit betrachten wir sowohl den statistischen Fehlerkorrektural-
gorithmus zum Lösen des allgemeinen Problems der Fehlerkorrektur als auch
die Varianten des Kryptosystems von J.R. McEliece, welche auf Gabidulin-
codes basieren.

Der erste Teil der Doktorarbeit behandelt die generellen Konzepte codier-
ungstheoriebasierter Kryptographie und die Sicherheit der zugrundeliegen-
den Probleme. Nach einer Einleitung zu den grundlegenden Begriffen und
Prinzipien betrachten wir zunächst den statistischen Fehlerkorrekturalgo-
rithmus [23] (welcher als eine Variante des iterativen Decodierens gese-
hen werden kann [13]). Für einen gegebenen Code sucht der statistischen
Fehlerkorrekturalgorithmus zunächst eine große Menge kleiner Codewörter
im dualen Code und ist dann imstande, einen gewissen Anteil fehlerhafter
Codewörter in konstanter Zeit zu korrigieren. Dieses kann ein großer Vorteil
sein, wenn man viele fehlerhafte Nachrichten korrigieren muß.

Im ursprünglichen Artikel [23] findet sich leider keine Analyse der Phase
der Vorberechnungen. Experimente belegen, daß die dort angegebenen Gren-
zen der Speicherkomplexität zu optimistisch sind. Wir analysieren detail-
liert die Speicherkomplexität des Algorithmus und bestimmen neue theo-
retisch fundierte Grenzen. In unseren Experimenten zeigt sich, daß diese
neuen Grenzen präziser als die vorherigen sind, welches die vereinfachen-
den Annahmen bestätigt, welche wir für unsere Analyse benötigen. Weiter-
hin analysieren wir die Zeitkomplexität der Vorberechnungen und folgern,
daß diese wesentlich höher ist, als vom Autor des ursprünglichen Artikels
angegeben.

Ein Nachteil der ursprünglichen Version des Algorithmus ist das Vernach-
lässigen eines Großteils der mit der Vorberechnung gewonnenen Information.
Wir zeigen, wie man den Algorithmus verbessern kann, indem man die In-
formation aus den Vorberechnungen besser nutzt. Trotz der Verbesserung
ist unsere Variante des statistischen Fehlerkorrekturalgorithmus langsamer
als ein einzelner Aufruf des Algorithmus von Canteaut und Chabaud zum
Lösen des allgemeinen Problems der Fehlerkorrektur [7]. Folglich schließen
wir, daß die aktuell vorgeschlagenen Parameter für das McEliece Kryptosys-
tem weiterhin als sicher anzunehmen sind. Nichtsdestotrotz scheint eine
weitere Verbesserung des statistischen Fehlerkorrekturalgorithmus möglich,
falls ein signifikantes Beschleunigen der Vorberechnungen erreicht werden
kann. Ferner könnten die von uns dargestellten Methoden auf das itera-
tive Decodieren übertragen werden. Deshalb bleibt es eine offene Frage, ob



VIII

Angriffe auf das McEliece Kryptosystem existieren, welche besser als die
bislang bekannten sind.

Der zweite Teil der Arbeit ist Gabidulincodes und ihrer Anwendung
in der Kryptographie wie im GPT Kryptosystem von der EuroCrypt’91
[18] und dessen Varianten gewidmet. Die in Gabidulincodes verwendete
Norm ist die Rangnorm und nicht die Hamming Norm, weswegen sie die
Korrektur von Fehlermustern ermöglichen. Wir präsentieren einen neuen
Fehlerkorrekturalgorithmus, welcher auf “interleaved” Gabidulincodes über-
tragbar ist. Dort ermöglicht er in den meisten Fällen die Korrektur von
Rangdistanzfehlern bis zum Anteil der im Codewort redundanten Informa-
tion, welches weit über die normale Fehlerkorrekturkapazität hinaus geht.
Unser Resultat ist damit analog zu dem von Bleichenbacher, Kiayias und
Yung für GRS Codes [6].

Die Frage, ob Gabidulincodes für die Anwendung in der Kryptogra-
phie geeignet sind, wurde zwar in den vergangenen Jahren verstärkt disku-
tiert, blieb aber ungelöst. Der Vorschlag von Gabidulin, Paramonov und
Tretjakov ist vielversprechend, da das Problem der Fehlerkorrektur in der
Rangnorm schwieriger ist als in der Hamming Norm [24]. Daher bieten
solche Codes eine bessere Sicherheit gegenüber allgemeinen Algorithmen zur
Fehlerkorrektur, während die Größe des öffentlichen Schlüssels kleiner ist als
beim Kryptosystem von McEliece.

Trotz der höheren Sicherheit gegenüber den Angriffen auf die Schlüssel-
texte gelang es Gibson in den Jahren ’95 und ’96 das GPT Kryptosystem mit
den ursprünglich vorgeschlagenen Parametern zu brechen, indem er den pri-
vaten Schlüssel angriff ([20], [22]). Wir fassen die in der Folge vorgeschlage-
nen Strategien zusammen, die Angriffe auf den privaten Schlüssel verhindern
sollten. Diese Strategien sind sehr interessant, da die meisten bei allen auf
Codierungstheorie basierten Kryptosystemen eingesetzt werden können und
zu einem sicheren asymmetrischen Kryptosystem führen können (aber dies
nicht notwendigerweise tun). Weiterhin analysieren wir diese Strategien auf
ihre Wirksamkeit bei Gabidulincodes, und betrachten sowohl die Sicherheit
der Schlüsseltexte als auch die der privaten Schlüssel. Zunächst zeigen wir,
wie man mit unserem neuen Fehlerkorrekturalgorithmus für Gabidulincodes
Schlüsseltexte des GPT Kryptosystems in Polynomialzeit angreifen kann.
Danach übertragen wir unsere Überlegungen auf Angriffe auf den privaten
Schlüssel. Wir zeigen abschließend, daß die Struktur der Gabidulincodes
erlaubt, den privaten Schlüssel in allen Parametersätzen und Varianten des
GPT Kryptosystems anzugreifen.
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1 Coding Theory and Cryptography

We give a short introduction into the basic concepts and definitions of coding
theory and its application to cryptography. We will limit ourselves to linear
codes over finite fields, thus we make the following definition:

Definition 1.1 An [n, k]-code C over a finite field F is a k-dimensional
subvectorspace of the vector space Fn. We call the code C an [n, k, d] code
if d = minx,y∈C ‖x − y‖ for some norm ‖ · ‖. The number of positions of an
vector x ∈ Fn, which differ from zero is called weight of x and corresponds
to the Hamming norm.

Any subvectorspace of C is said to be a subcode of C. If C is a code
over F and FSUB is a subfield of F, then the FSUB-(subfield) subcode of C
is the code consisting of all words of C, which have only entries in FSUB. A
FSUB-subfield subcode is a FSUB-linear code and may be represented as an
[n′ ≥ n, k′ ≤ k] code over FSUB. As codes are treated as vector spaces, we
will often define them by the matrices related to the code:

Definition 1.2 The matrix C ∈ Fk×n is a generator matrix for the [n, k]
code C over F, if the rows of C span C over F. We write C = 〈C〉. A
generator matrix C is said to be in systematic form, if its first k columns
form the identity matrix. The matrix H ∈ Fn×(n−k) is called check matrix
for the code C if it is the right kernel of C. Thus, a word c is in C if its
syndrome cH is zero. The code generated by H⊤ is the dual code of C and
denoted by C⊥. If the rows of an (n − k) × n matrix M span C⊥ we write
C⊥ = M. With this notation M⊤ is a check matrix of C.

For the ease of notation we will use the following notation throughout the
paper: We will identify x ∈ Fn with (x1, · · · , xn) , xi ∈ F for i = 1, · · · , n.
For any (ordered) subset {j1, · · · , jm} = J ⊆ {1, · · · , n} we denote the vector
(xj1, · · · , xjm) ∈ Fm with xJ . Similarly, we denote by M•J the submatrix of
a k × n matrix M consisting of the columns corresponding to the indices of

J and MJ ′• =
((

M⊤
)
•J ′

)⊤
for any (ordered) subset J ′ of {1, · · · , k}. Block

matrices will be given in brackets. A set J of columns is said to contain an
information set of a code G = 〈G〉 if G•J has full rank.

1.1 GRS and Goppa Codes

An important class of codes are the GRS codes, which are strongly related
to the class of Goppa codes used by McEliece to define his cryptosystem.
Thus, we briefly introduce them:
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Definition 1.3 A GRS code over Fqm of length n with designed minimum
distance t + 1 is defined by two vectors a, z ∈ Fn

qm, where ai 6= aj for i 6= j
and all zi 6= 0. GRS codes are Hamming distance codes. The canonical
check matrix of the GRS code is of the form

H =




z1a
0
1 z1a

1
1 · · · z1a

t−1
1

z2a
0
2 z2a

1
2 · · · z2a

t−1
2

...
. . .

...
zna0

n zna1
n · · · znat−1

n


 ∈ Fn×t

qm . (1)

A Fq-subfield subcode of a GRS code is called an alternant code and has di-
mension k ≥ n−mt. If for a GRS code, there exists a polynomial g ∈ Fqm[X]
of degree t, for which g(ai) = 1/zi, the polynomial is called Goppa polyno-
mial and the Fq-subfield subcode is called Goppa code (see e.g. [32] or [10]).
If there exists an irreducible Goppa polynomial, then the Fq-subfield sub-
code of

〈
H⊥
〉

has minimum distance 2·t+1 and is called an irreducible Goppa
code. For GRS codes, as well as for Goppa codes, there exist algorithms for
correcting errors of hamming norm up to half of the minimum distance in
O(n2) respectively O(n · t · m2) binary operations, see e.g. [5] and [10].

1.2 McEliece-like Cryptosystems

Even if R.J. McEliece used binary Goppa codes with irreducible generator
polynomials in his original cryptosystem, he led way to a large class of cryp-
tographic systems. Following his ideas, every class of error correcting codes
can be used to construct a public key cryptosystem – even if the security
status is not known a priori. A pseudo-description of such cryptosystems
would be the following:

Definition 1.4 A McEliece-like code based public key cryptosystem con-
sists of three algorithms:

(i) The key generation algorithm, which takes in a (set of) security
parameter(s) and returns a secret key, which consists of

- a (set of) secret code(s) over a finite field F, which allow(s) to
efficiently correct up to t errors according to a certain norm and

- an efficiently invertible transformation, which maps (tuples of)
codewords of the secret code(s) to codewords of a public code
Gpub.
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The public key consists of the matrix Gpub generating Gpub and the
number r of errors one can correct in Gpub knowing the secret key.

(ii) The encryption algorithm, which takes in a message x, generates a
random vector e of norm r and returns the ciphertext c = xGpub + e.

(iii) The decryption algorithm takes in the ciphertext c, uses secret trans-
formation to recover the error e and returns the message x.

In this original variant Gpub should not be systematic. Otherwise the
first k positions of the ciphertext would have strong correlation with the
message. However, one could as well encode the message in the error vector
e and choose a random vector x to generate the vector c. In this variant
one can publish an systematic check matrix of Gpub instead of Gpub itself,
which reduces the public key size. As a consequence, the syndrome s of c
is sufficient to recover the message and can be treated as ciphertext. This
variant introduced by Niederreiter [35] and the original McEliece PKC have
equivalent security [29].

The security of code based cryptosystems depends on the difficulty of
the following two attacks:

(i) Structural Attack: Recover the secret transformation and the de-
scription of the secret code(s) from (Gpub, r).

(ii) Ciphertext-Only Attack: Recover the original message from the
ciphertext and the public key.

If a code based cryptosystem resists both types of attacks, one can use
general or specific conversions to obtain a cryptosystem which meets the
CCA2 security notions as studied for example in [26]. Note that for CCA2-
secure variants of the McEliece PKC one can choose Gpub of systematic form,
which reduces the public key size like in the case of the Niederreiter variant.

The difficulty of the ciphertext-only attack is related to the general de-
coding problem, which we will highlight in section 2. However, there may
exist other ways to attack a code based cryptosystem by this kind of attack
as we will see in section 3. In general, the difficulty of structural attacks
is not related to any classic coding theoretic problem and mainly depends
on the class of codes and the secret transformation used. In this section we
present the known techniques of how to generate the secret transformation.
We assume, that it is sufficient to know a certain matrix G ∈ Fk×n to correct
errors of norm at most t in the secret code. This assumption is true for the
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McEliece cryptosystem, but as well for most of the proposed variants, see
e.g. [41] and [18]. To hide the structure of the secret code (i.e. G), one can
apply one or several of the transformations from table 1.1.

(i) Row Scrambler [33]: Multiply G by a random invertible matrix S ∈ Fk×k

from the left. As 〈G〉 = 〈SG〉, one can use the known error correction algo-
rithm. Publishing a systematic generator matrix provides the same security
against structural attacks as a random S.

(ii) Column Scrambler / Isometry [33]: Multiply G by a random invertible
matrix T ∈ Fn×n from the right, where T preserves the norm. Obviously one
can correct errors of norm up to t in 〈GT〉, if G and T are known.

(iii) Subcode [35]: Let 0 < l < k. Multiply G by a random matrix S ∈ Fl×k of
full rank from the left. As 〈SG〉 ⊆ 〈G〉, the known error correction algorithm
may be used.

(iv) Subfield Subcode [33]: Take the FSUB-subfield subcode of the secret code
for a subfield FSUB of F. As before, one can correct errors by the error
correcting algorithm for the secret code. However, sometimes one can cor-
rect errors of larger norm in the subfield subcode than in the original code,
compare definition 1.3 and following.

(v) Concatenation [43]: Take the code
〈[

G SG
]〉

for an invertible matrix
S ∈ Fk×k. In Hamming norm, the secret key holder can correct 2t + 1 errors
in this code, as he can correct the errors in the first or the second n columns.

(vi) Random Redundancy [14]: Add a number l of random columns at the
left side of the matrix G. Errors can be corrected in the last n columns.

(vii) Artificial Errors [18]: One can choose to modify the matrix G at a small
number of positions. However, the minimum distance of the code obtained
might not be the same and if one uses the error correction algorithm of the
secret code, one will not longer be able to correct t errors, but a smaller
number.

(viii) Reducible Codes [17]: Choose some matrix Y ∈ Fk×n and take the code
generated by [

G 0

Y G

]
.

Error correction by the algorithm for the secret code is possible if one corrects
errors in sections, beginning from the right. One might extend this strategy
by replacing one of the matrices G by a second secret code, compare section
3.3.2.

Table 1.1: Strategies for hiding the structure of a code
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Note that it is essential to use certain transformations in combination.
We would like to remark two further facts: Using a concatenation may be
seen as the combination of the reducible code and the subcode modification.
One could as well treat the subfield subcode transformation as a subcode
transformation for structural attacks, but we prefer treating them separately.
Table 1.2 shows a classification of some code based public key cryptosystems
and whether resistance against structural attacks may be achieved for ap-
propriate parameter sets (compare [34], [41] and [47]).

PKC McEliece Niederreiter Modified Sidelnikov
Niederreiter

Class of secret code GRS 1 GRS GRS Reed-Muller
Row Scrambler • • • •

Isometry • • • •
Subcode - - • -

Subfield Subcode • - - -
Random Redundancy - - - -

Artificial Errors - - - -
Concatenated Code - - - - / •
Reducible Codes - - - -
Security against

structural attacks
√

no
√

no/no

1 Goppa codes are subfield subcodes of certain GRS codes.

Table 1.2: Classification of code based cryptosystems

Remark 1.5 (The McEliece PKC) According to our notation a McEliece
PKC key pair is generated in the following way: On input of the security
parameter (n = 2m, t), a binary irreducible Goppa polynomial g ∈ Fqm [X]
of degree t is created and a corresponding [n, n − t, t + 1] GRS code GGRS

over F2m of length n with check matrix H according to equation (1) is com-
puted. Afterwards the matrix G generating the F2-subfield subcode of GGRS

is determined. Note, that this is an [n, k ≥ n − mt, 2t + 1] Goppa code.
Afterwards an invertible S ∈ Fk×k

2 and a permutation matrix T ∈ Fn×n
2 are

generated at random. The public McEliece key is

(Gpub, r) = (SGT, t)
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and the secret key consists for example of H and the secret transformation

π : GGRS →
〈
Gpub

〉

y →
{

yP y ∈ Fn
2

0 otherwise .

Note, that we omit storing S in the secret key, as it may be easily be recovered
by the secret key holder and is uniquely determined if Gpub is systematic.
In the latter case, S is not needed for decryption. Example parameter sets
will be given in table 1.3.

1.3 CFS-like Signature Schemes

A signature scheme can be built using a key pair of a McEliece-like PKC
[8] if the ratio of decryptable syndromes to the total number of syndromes
is not too small. If a McEliece PKC key pair is used, we call the resulting
signature scheme CFS scheme [8].

Definition 1.6 A CFS-like code based public key signature scheme consists
of three algorithms:

(i) The key generation algorithm, which takes in a (set of) security
parameter(s) and returns a key pair of a McEliece-like code based
public key cryptosystem with a not too small ratio of decryptable
syndromes: ∣∣{ e ∈ Fn ‖e‖ ≤ r

}∣∣
|{s ∈ Fn−k}| .

(In the case of the CFS scheme, the ratio is about 1
r! [8].)

(ii) The signature algorithm, which takes in a message x ∈ Fk, chooses a
random vector i and tries to decrypt a ciphertext corresponding to the
syndrome (deduced from) s = h(

[
x i

]
), where h is a hash function.

The procedure is repeated until a decryptable syndrome is found. The
signature of x is (e, i), where e is the error vector corresponding to s.

(iii) The verification algorithm takes in a signature (e, i) and a message
x. The verification algorithm accepts a signature if the syndrome
corresponding to e is (deduced from) s = h(

[
x i

]
).
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1.4 Performance of Code Based PKCs

Parameter sets, performance and security against state of the art attacks
for the McEliece PKC and the CFS signature scheme may be found in table
1.3. Please remember, that the code used will be a binary irreducible Goppa
code. As structural attacks for the McEliece PKC are either very slow (see
e.g. [21]) or applicable only to a negligible fraction of keys (compare [31]),
we mention only the ciphertext-only attack. One can see that the only
inconvenience is the public key size, which is much larger than for RSA with
the same security level, compare table 1.4.

McEliece Size public Workfactor
system key in bytes (binary operations)
parameters plain CCA2- en- de- best
[n, k, d = 2t + 1] secure cryption cryption attack 2

[1024, 524, 101] 67,072 32,750 218 222 264

[2048, 1608, 81] 411,648 88,440 220.5 223 298

[2048, 1278, 141] 327,168 123,008 220 224 2110

[2048, 1025, 187] 262,400 131,072 220 224.5 2106

[4096, 2056, 341] 1,052,672 524,280 222 226.5 2184
[
216, 65392, 19

]
3 ≈ 535·106 1,177,056 231 227 283.7

2 Approximation of general decoding attack from [7], compare section 2.2
3 This parameter set is used for the CFS signature scheme, with an average signature cost

of 237 and a verification cost of 219 binary operations.

Table 1.3: Performance of the McEliece PKC

System Size Workfactor (binary operations)
public key en- de- best
in bytes cryption cryption attack 4

RSA 1024-bit Modulus 256 230 230 279

RSA 2048-bit Modulus 512 233 233 295

RSA 4096-bit Modulus 1024 236 236 2115

4 this is the NFS attack for factoring the RSA modulus, see [28].

Table 1.4: Performance of the RSA PKC
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2 On the General Decoding Problem

The most promising part about the McEliece cryptosystem and its variants
is the fact, that a ciphertext-only attack is related to two well known prob-
lems in coding theory, which both are NP-hard in Hamming norm. If a
structural attack on a McEliece-like cryptosystem is impossible an attacker
is apparently faced with one of the following problems:

Definition 2.1 The general decoding problem for linear codes in a norm
‖ · ‖ over Fn is defined as follows:

• Let C ∈ Fk×n define an [n, k] linear code C over F and let y be in Fn.

• Find x ∈ C where ‖y − x‖ is minimal.

Let d be the minimum distance of C in respect to the given norm and e
be a vector of norm ≤ t :=

⌊
d−1
2

⌋
and x ∈ C. Then there is a unique solution

to the general decoding problem for y = x + e. If it is assured that the
vector y (in the general decoding problem) is of the form above, we call the
corresponding problem the bounded distance decoding problem. The latter
problem can be solved as well by solving the problem of finding a vector of
norm t in the code generated by

[
C

y

]
.

The latter problem has a more general version:

Definition 2.2 The problem of finding weights (SUBSPACE WEIGHTS)
of a linear code is defined as follows:

• Given an [n, k] linear code C over F and w ∈ N = {1, 2, 3, · · · }.

• Find a x ∈ C satisfying ‖x‖ = w.

Our hope that we might be able to construct secure cryptosystems based
on the problems above is based on a result from [4]:

Theorem 2.3 The general decoding problem and the problem of finding
weights are NP-hard if the norm ‖ · ‖ is the Hamming norm.

However, for the McEliece PKC the problem of recovering the plaintext
from a ciphertext has always a unique solution. Consequently, attacking a
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ciphertext is to solve the bounded distance decoding problem in a permuted
Goppa code. This problem is not proven to be NP-hard.

In this section we will present, analyze and improve the statistical decod-
ing algorithm, which tries to solve the general decoding problem by solving
weak instances of the problem of finding weights. Further, we will analyze
the resulting attack on the McEliece cryptosystem.

2.1 Statistical Decoding

This general decoding algorithm was presented by A Kh. Al Jabri in [23].
The idea of statistical decoding is quite similar to the one of iterative de-
coding (see e.g. [13]) and may be described as follows:

Given an [n, k, d] code G, we first compute a sufficiently large set Hw

of dual vectors of weight w (i.e. an alternative description of G = H⊥
w).

In the following we assume that w < n/2. All observations are analogous
for w > n/2. Given a word y = x + e, where x ∈ G and wt(e) is small,
we take a vector h ∈ Hw, where yh⊤ 6= 0. As xh⊤ = 0, the non-zero
positions of h reveals some information about e. (Let e.g. wt(e) = 4, then
either one or three non-zero entries of e correspond to non-zero entries of
h). Collecting the information each of the different vectors h ∈ Hw reveals,
we are able to find e in some cases. In contrary to iterative decoding, the
statistical decoding algorithm tries to find a set of error-free positions and
not to identify error positions.

There are three major questions regarding this technique, which we will
address in the following sections: “How to compute the set Hw?” (section
2.2), “How to combine the information the vectors of Hw reveal about e ?”
(the following section) and “What is the probability of identifying e?” (sec-
tion 2.1.2). In section 2.1.3 we show how to improve the success probability
of correct decoding. For now, we present the initial verison:

2.1.1 The Initial Algorithm

Let Hw be a set of vectors of weight w of the dual space of the [n, k, 2t + 1]
linear binary code G with generator Matrix G. Let y be the sum of a
codeword uG ∈ G and a error vector e with weight at most t. A Kh. Al
Jabri points out, that for randomly generated codes the probability that a
value of 1 appears in the i-th position of h ∈ Hw with yhT = 1 depends on
i being a erroneous position in the vector y. We say that we have an odd
error detection in i if yhT = 1 and hi = 1. Under that condition, let p+

w be
the probability that i is a erroneous position and q+

w be the probability that
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i is a non-erroneous position. We can compute these probabilities as

p+
w =

∑m≤t
m odd

( n−t
w−m

)( t−1
m−1

)
∑m≤t

m odd

(
t
m

)(
n−t

w−m

) , q+
w =

∑m≤t
m odd

( n−t−1
w−m−1

)( t
m

)
∑m≤t

m odd

(
t
m

)(
n−t

w−m

) .

Since w < n/2 the inequation p+
w > q+

w holds, although for large w the
difference is small. We define v+

y,w :=
∑

h∈Hw

(
yhT mod 2

)
. Then, for

i ∈ {1, · · · , n} an (non-)error position the random variable

1

v+
y,w

∑

h∈Hw

(
yhT mod 2

)
hi

is the relative frequency estimate for p+
w (q+

w respectively). Its variance is
(σ+

w )
2

= p+
w(p+

w − 1)/v+
y,w. Thus, we can recover u using algorithm 2.1.1 if

Hw is chosen in a way so that we can distinguish between p+
w and q+

w .

Algorithm 2.1.1 StatDec

Input: Hw, y.
Output: u, the information vector.

v =
∑

h∈Hw

(
yh⊤ mod 2

)
h ∈ Zn.

choose I = {positions of the k smallest entries of v} s.t. G·I is invertible.

u = yIG
−1
·I

Al Jabri claims, that precomputing a set Hw with

|Hw| ≈ 625 · 10−6 · p+
w

(
1 − p+

w

)
ǫ−2 (2)

vectors is sufficient for correct decoding [23]. However, Al Jabri’s initial
analysis of the size of Hw needed for error correction seems to be too opti-
mistic (compare as well [13]).

The work factor for algorithm 2.1.1 is

O
(
n · |Hw| + 2k3 + kn

)

binary operations having computed the set Hw in advance. The author of
[23] claims that the latter can be done e.g. by the methods of [7], which is
to be doubted (compare section 2.2,[13] and [40]). Computing the set Hw is
solving problem 2.2, which is a NP-hard problem in general. In addition, a



12 2 ON THE GENERAL DECODING PROBLEM

set Hw of the desired size will not even exist if w is chosen too small. Goppa
codes, as BCH codes and GRS codes have a weight distribution “close”
to the expected weight distribution of random code, which is the binomial
distribution [23]. Consequently, we have the bound

|Hw| ≤
(

n

w

)
2−k (3)

if we want to decode e.g. a random code or a Goppa code. We will come
back to this problem in section 2.2, but first we want to analyze the success
probability of StatDec.

2.1.2 The Success Probability of Statistical Decoding

The first point of critique on StatDec is its success probability. In our
experiments for small parameter sets we had difficulties to correct errors
with a set Hw of size given in equation (2). It seems, that the set has to be
about 213 times larger than claimed by Al Jabri to allow correct decoding
in most cases. We give a brief example: For a [26, 40, 9] Goppa code (or
a [26, 40, 9] random code), Al Jabri’s estimation for H17 is |H17| = 1 ≤(64
17

)
2−40 ≈ 210. However, one vector of the dual code can not be sufficient

for correct decoding in most cases. Therefore we want to take a closer look
at the success probability of statistical decoding. Later we show how to
improve StatDec and give examples.

In the following, we assume, that every set Hw consists of random vectors
of weight w. If the vectors in Hw are somehow related, the probability for
finding the correct error vector changes.

We return to the notations previously used. On input Hw and y, Stat-

Dec returns the correct error vector iff for some δ with −p+
w < δ < 1 − p+

w

the following two conditions hold:
(i) For every error position i:

vi > (p+
w + δ)v+

y,w.

(ii) There are at least k non-error positions j, such that

vj < (p+
w + δ)v+

y,w.

We may assume, that v+
y,w ≈ 1

2 |Hw|, and thus the probability, that a certain
δ fulfills the first condition is smaller than

P := Φ
(
−δ/σ+

w

)t
= Φ


−δ

√
1
2 |Hw|

p+
w(p+

w − 1)




t

, (4)
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where Φ refers to the distribution function of the standardized normal dis-
tribution. Thus, we have to choose

2
(
Φ−1

(
P1/t

))2
p+

w(1 − p+
w)δ−2 ≤ |Hw| ≤

(
n

w

)
2−k. (5)

Assume k ≈ (n−t)/2, then it is very probable, that k values vj for non error
positions j will be below their mean value p+

wv+
y,w. Thus, if there exists an δ

for a given ciphertext y, such that the two conditions above are fulfilled, then
it will probably be at least q+

w − p+
w . Since Φ−1(0.95) = 1.65 we conclude,

that with a set of size

|Hw| ≈ 5.4p+
w(1 − p+

w)
1

(p+
w − q+

w )2
. (6)

we can correct errors with a probability about 0.95t. Note, that this number
is a factor 213 larger than the one given by Al Jabri (compare as well [13]).
We expect that with a set of size given in equation (2) we could correct
errors with a probability about 1/2t, only.

2.1.3 An Improved Version of Statistical Decoding

To improve the probability of correct error correction, we want to include
even error detection. With the notation of this section we have an even
error detection if yhT = 0 and hi = 1. Let p−w be the probability that i
is a erroneous position and q−w be the probability that i is a non-erroneous
position in the case of an even error detection. These probabilities can be
computed as follows:

p−w =

∑m≤t
2≤m even

( n−t
w−m

)( t−1
m−1

)
∑m≤t

m even

( t
m

)( n−t
w−m

) , q−w =

∑m≤t
m even

( n−t−1
w−m−1

)( t
m

)
∑m≤t

m even

( t
m

)( n−t
w−m

) .

We define v−y,w :=
∑

h∈Hw

(
1 − yhT mod 2

)
. Then, for an (non-)error po-

sition i the value
1

v−y,w

∑

h∈Hw

(
1 − yhT mod 2

)
hi

is the relative frequency estimate for p−w (q−w respectively). We observe, that
if p+

w > q+
w , then p−w < q−w .

For all possible weights, the relative frequency estimates of p+
w and p−w

are approximately normal distributed if |Hw| is large enough. Therefore
we can use the standard transformation, s.t. all the relative frequency es-
timates are N (0, 1) distributed. It follows, that one can sum the scaled
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relative frequency estimates obtained by several sets containing dual vectors
of different weights. As a consequence, we consider H as the set of all dual
vectors of weight w satisfying b ≤ w ≤ B < n/2, i.e. H =

⋃B
w=b Hw. All in

all, we get the modified algorithm 2.1.2. With the notation of StatDec+:
If i is an error position, then for all v, (v)i has mean value 0. For an im-
plementation one should omit the previous computation of σ+

w and σ−
w . and

compute these values while computing vw.

Algorithm 2.1.2 StatDec+

Input: H =
⋃B

w=b Hw, y.
Output: u, the information vector.

for w = b to B do
(σ+

w )
2

= p+
w · (1 − p+

w) · v+
y,w.

(σ−
w )

2
= p−w · (1 − p−w) · v−y,w.

1 = (1, 1, · · · , 1) ∈ {0, 1}n.
for w = b to B do

vw =
∑

h∈Hw

(
yh⊤ mod 2

)
(h − p+

w1)/σ+
w ∈ Rn.

vw+B = −∑h∈Hw

(
1 − yh⊤ mod 2

)
(h− p−w1)/σ−

w ∈ Rn.

for all binary combinations v of the different vl do
choose I = {positions of the k smalles entries of v} s.t. G·I is invert-
ible.
u = yIG

−1
·I

if weight(uG ⊕ y) ≤ t then
return u = u

Let us assume, that the different relative frequency estimates are in-
dependent. We define v =

∑B
w=b ewvw +

∑B
w=b ew+Bvw+B, where each

ei ∈ {0, 1}. Then for an error position j, (v)j is normal distributed with

mean value 0 and variance σ2 equal to the number of ew 6= 0. If j is a
non-error position, then (v)j is normal distributed with mean value

E :=

B∑

w=b

ew

(
q+
w − p+

w

σ+
w

v+
y,w

)
+

B∑

w=b

ew+B

(
p−w − q−w

σ−
w

v−y,w

)
< 0
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and variance

S2 =
B∑

w=b

ww

(
q+
w (1 − q+

w )
(
σ+

w

)2 v+
y,w

)
+

B∑

w=b

ww+B

(
q−w (1 − q−w )
(
σ−

w

)2 v−y,w

)

In most cases we will have 2v+
y,w ≈ 2v−y,w ≈ |Hw|. To distinguish between

error and non-error positions by v, we get the following conditions: There
exists an δ ∈ R such, that for every error position i the inequation vi > δ
holds and there are at least k non-error positions j, such that vj < δ. The
probability, that a certain δ fulfills this conditions is smaller than Φ (−δ/σ)t.
Again, we expect, that the condition δ ≥ E has to be true in most cases,
and thus we get

P ≈ Φ


 1

σ




B∑

w=b

ew

√(
p+

w − q+
w

)2 |Hw|
2p+

w(1 − p+
w)

+

B∑

w=b

ew+B

√(
q−w − p−w

)2 |Hw|
2p−w(1 − p−w)






t

as a suitable estimate for the probability of correct decoding with Stat-

Dec+. However we are not able to prove, that the different relative fre-
quency estimates for p+

w and q+
w are independent. Nevertheless, for an im-

plementation it seems recommendable, to start with the vectors v where
|{ei 6= 0}| is large.

2.1.4 Experimental Results

We made several experiments for codes of small length. As expected, the
proposed variant StatDec+ of the initial algorithm allows error correction
in a significant larger number of cases than StatDec, especially when the
size of the sets Hw is small. Further, it seems recommendable to include
sets Hw with small w, even if their size is smaller than desired (e.g. up to a
factor 4).

In the following we present three examples of our experiments. Note that
for all our examples the bound for |Hw| given by equation (2) is useless, as
it is smaller than 0. Further, the precomputation to find the sets Hw was
quite time-consuming and an exhaustive search in some cases. The time
needed to perform the precomputation for StatDec+ is the same as for
StatDec.

In our first example we considered a [26, 40, 9] Goppa code. For this
code the relative frequency estimates and the desired sizes of each Hw

resulting from equation (6) are given in table 2.5. We computed a set
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w p+
w q+

w p−w q−w |Hw|
16 0.295 0.248 0.210 0.263 1433
17 0.302 0.263 0.232 0.268 2160
18 0.311 0.280 0.254 0.284 3393

Table 2.5: Correcting errors of weight 4 in a [64, 40] code.

H = {H16,H17,H18}, where each of the sets Hw consisted of 100 random
vectors. With StatDec+ we were able to correct errors of weight 4 in
93.2% of the cases. With the original algorithm, called with each set Hw,
correct error correction was possible in 17.5% of the cases, only.

In the second example, we looked at the same code as in the first example,
but chose each Hw to be the set of all vectors of weight w. For our particular
Goppa code, we got: |H16| = 345, |H17| = 1234 and |H18| = 3149. In
this case, error correction was possible with StatDec and StatDec+ in
all cases. An correct error correction with StatDec would not have been
possible in all cases, if only one of the sets Hw would have been used.

w p+
w q+

w p−w q−w |Hw| StatDec success rate

8 0.183 0.119 0.082 0.129 562 95.0%
9 0.189 0.136 0.102 0.145 835 79.4%

10 0.196 0.152 0.122 0.160 1283 73.8%

Table 2.6: Correcting errors of weight 6 in a [64, 22] code.

In our last example, we looked at a [26, 22, 13] random code. The val-
ues for the relative frequency estimates and the sizes of Hw resulting from
equation (6) are given by table 2.6. The expected success probability of
StatDec is ≈ 0.956 = 73.5% for each set Hw. In this case we were able
to compute the desired sets in reasonable time. Again, we made 1000 at-
tempts to correct errors of weight 6. The experimented success probability
for StatDec with such sets is larger than expected, compare table 2.6.
With StatDec+ we were able to correct all errors, whereas with StatDec

we would have been able to correct them in 99.2% of the cases.
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2.2 On the Problem of Finding Weights

Al Jabri proposes to use a variant of Sterns algorithm to solve the problem
of finding weights, i.e. to compute Hw. J. Stern designed his algorithm to
find a (unique) shortest codeword of a binary linear code.

We recall the original algorithm of Stern [45], which tries to find a vector
of low weight w. Let H be the check matrix of the code G. Given the
parameters p and l, successively choose two disjoint sets of p < k/2 code
positions I1 and I2 at random. If HI0• with I0 := {1, · · · , n} \ (I1 ∪ I2) is
singular the algorithm fails at this point and is started anew. Else, a set
J of l columns of H is chosen. We may assume without loss of generality,
that I1 = {n − k + 1, · · · , n − k/2}, I2 = {n − k/2 + 1, · · · , n} and J =
{1, · · · , l}. By Gaussian elimination we can assume that the check matrix
is of the form

H
⊤ =

(
Idn−k

Z1 Z2

B

)
,

where Z1 and Z2 are l× k/2 matrices, and B is a (n− k− l)× k matrix. For

all pairs of vectors (e1, e2) ∈ ( {0, 1}k/2 )2 where wt(e1) = wt(e2) = p we
check whether e1Z

⊤
1 = e2Z

⊤
2 . If the condition is fulfilled, we compute the

unique vector e0 ∈ {0, 1}n−k, such that
[

e0 e1 e2

]
H = 0. Each vector

e =
[

e0 e1 e2

]
is a candidate for a short codeword. One can observe,

that the fist l entries of e are zeros and thus the weight of e is smaller than
n− k − l + 2p. If none of the constructed vectors e is of the desired weight,
then the algorithm fails. The success probability of one iteration of the
algorithm is

Pp,l,w =

( n−w
k/2−p

)(w
p

)(n−w−k/2−p
k/2−p

)(w−p
p

)(n−k−(w−2p)
l

)

( n
k/2

)(n−k/2
k/2

)(n−k
l

)

in the case of a unique code word e′ of weight w.
To improve the performance of Sterns algorithm, one can view its dual

variant – depending on the ratio of k/n – and try to avoid the costly Gaus-
sian elimination by choosing I1 and I2 iteratively and not at random. This
method was introduced and analyzed by Canteaut and Chabaud, compare
[7]. The success probability of the algorithm for finding the shortest code-
word is to be modeled by a Markov chain in that case. We omit details and
just take the result, that the work factor for one iteration becomes

Ωp,l =

(
1

2
n(n − k) + 2l

(
k/2

p

)
(p − 1) + (n − k − l)(2p − 1)

(
k/2

p

)2 1

2l

)
.
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The work factor of the resulting algorithm is lower bounded by P−1
p,l,wΩp,l

and can be approximated by

O(n3)2−t log2(1−k/n),

if t is small and k/n is not too close to one [41]. Since for the McEliece cryp-
tosystem n = 2m and k = n− tm, N. Sendrier concludes, that the maximum
degree of security for the McEliece cryptosystem against the general decod-
ing attack from [7] is obtained for an information rate k/n ≈ 1 − 1/ exp(1).
This would lead e.g. to the choice of m = 11 and t = 70 for the McEliece
cryptosystem, compare table 1.3.

In the case of statistical decoding we use the mentioned algorithm from
[7] not to find a single lowest weight code word, but several code words of
a certain weight w. If there are several code words of weight w, the work
factor decreases by a factor equal to the number of such code words. As the
expected number of vectors of weight w is given by the binomial distribution,
we get the expected workfactor to compute a set Hw of vectors of weight w
as

Wp,l,w =
2k

(
n
w

) Ωp,l

Pp,l,w
·
|Hw|−1∑

i=0

(
1 − i · 2k

(
n
w

)
)−1

. (7)

If one wants to compute a set H, which serves as an input for the StatDec+,
we expect, that every execution of a single round of the algorithm returns

B∑

w=b

2k

(n
w

)P−1
p,l,w

vectors of weight w satisfying b ≤ w ≤ B. However, using the algorithm
from [7] might not always be the best choice when trying to find multiple
words of any given weight, even if we did not find a better way to do so.

Unfortunately, we were not able to find an example parameter set, where
the precomputation required for StatDec could be performed in less time
than the one needs for a single call of Canteaut’s and Chabaud’s general
decoding algorithm for the same code.

2.3 Attacking the McEliece PKC by statistical decoding

To attack the McEliece PKC with parameters m = 10 and t = 50 with
statistical decoding, Al Jabri claims that computing a set Hw consisting
of 238 vectors is sufficient. Unfortunately Al Jabri does not name w, but
we are quite sure, that he referred to the set H133. However, equation (4)
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McEliece w |p+
w − q+

w | |Hw| Workfactor
parameters StatDec finding
[2m, k, d = 2t + 1] Hw

[1024, 524, 101] 137 0.2 · 10−7 251 261 2152

[1024, 524, 101] 153 0.21 · 10−8 258 268 2138

[2048, 1278, 141] 363 0.41 · 10−14 296 2107 2609

[65536, 65392, 9] 32000 0.17 · 10−13 293 2109 ≫ 2131

Table 2.7: StatDec for example parameter sets

implies, that the probability of correct decoding is about 2−50 in that case.
A decoding attempt with StatDec takes 248 binary operations for this
input. Consequently, one would expect, that it would take approximately
298 binary operations, before an attack on one of 250 given ciphertexts is
successful.

We have shown that an attacker would need a set H137 consisting of
approximately 251 vectors to attack ciphertext of the McEliece PKC with
parameters m = 10 and t = 50. Even storing a set of this size seems im-
possible nowadays and the work factor for a single decoding attempt would
be larger than 261, which is not much faster than the general decoding algo-
rithm of Canteaut and Chabaud [7]. However, it takes at least 2152 binary
operations to compute the set H137 with the algorithm proposed by Can-
teaut and Chabaud. For this parameter set, one iteration for l = 19 and
p = 2 of the algorithm requires about 224 binary operations. Most of the
vectors returned by the algorithm will be of weight 241. For each one of 2−17

iterations, we will get only one of those vectors. Thus, after performing 280

Operations, one will still have computed less than 239 vectors of weight 241.
With a range of 114 ≤ w ≤ 241, we will not have enough vectors of the
dual space to attack the McEliece cryptosystem. Thus, it is not possible to
attack the McEliece cryptosystem with StatDec or StatDec+.

The situation for the signature scheme CFS is the same: Any set, that
would allow correct decoding in a non-negligible fraction of the cases is to
big to be stored efficiently and it is infeasible to perform the precomputation
(compare Table 2.7). Further, even after the precomputation, StatDec has
no or no significant advantage over the algorithm by Canteaut and Chabaud,
compare table 1.3.

Thus, we obtain the same result as the authors of [13] which conclude,
that like in the case of StatDec+, for iterative decoding a smaller set Hw as
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for the initial StatDec is sufficient. However, like for statistical decoding,
the size of Hw needed for iterative decoding is far too large to be computed
in feasible time.
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3 Rank distance codes and Cryptography

In 1985, E.M. Gabidulin proposed a new class of codes, called Gabidulin
codes [15]. These codes can correct rank distance errors (also called pat-
tern errors) efficiently, which in general is harder than correcting Hamming
distance errors [24]. At Eurocrypt’91, Gabidulin, Paramonov and Tretjakov
proposed a cryptosystem based on rank distance codes (GPT, [18]). Because
of its better resistance against general decoding attacks, smaller key sizes
were proposed for GPT than for the McEliece PKC.

However, the GPT cryptosystem was subject to structural attacks in
’95 and ’96 ([20] and [22]), which work only for small parameter sets since
they have exponential time complexity. To better hide the structure of
Gabidulin codes, in 2003 ([17], [14]) several variants of GPT were proposed.
The modifications proposed for GPT are highly interesting, as most of them
are applicable to all code based cryptosystems and intuitively the analogous
to the modifications proposed for the basic multivariate schemes. As noted
at PKC’06, the subcode modification for example leads to secure instances
when using GRS codes, but does not offer advantage over the McEliece PKC
[47]. For Gabidulin codes however, as proven by the author, all variants of
GPT are strongly connected to each other [39].

In this section, we focus on Gabidulin codes first. After presenting the
basic principles of Gabidulin codes, we develop a new algorithm for correct-
ing errors beyond half of the minimum distance in interleaved Gabidulin
codes. We show, that our new algorithm leads way to new attacks on cryp-
tosystems build from Gabidulin codes, allowing to attack ciphertexts as well
as the secret keys. As all our attacks run in cubic time, they are not even
much slower than the original decryption procedure, which takes quadratic
time. Further, we are able to show that our attack can easily be extended to
all parameter sets of all variants of GPT. Especially the resulting attack on
ciphertexts is interesting, as our attack evites solving any of the problems
on which the security of the GPT-like cryptosystems was meant to rely.

3.1 Rank Distance Codes

Rank distance codes were presented by Gabidulin in 1985. They are linear
codes over the finite field Fqm for q (power of a) prime and m ∈ N. As their
name suggests they use a special concept of distance. In this section we
recall the basic facts and give the notation used in the following sections.

Definition 3.1 Let x = (x1, · · · , xn) ∈ Fn
qm and b1, · · · , bm a basis of Fqm
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over Fq. We can write xi =
∑m

j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq.
The rank norm ‖ · ‖q is defined as follows:

‖x‖q := rank
(
(xij)1≤i≤n, 1≤j≤m

)
.

The rank norm of a vector x ∈ Fn
qm is uniquely determined (independent

of the choice of basis) and induces a metric, called rank distance. Note,
that the Hamming distance of two vectors is never smaller than their rank
distance. Further, if T ∈ Fn×n

q is an invertible matrix, then ‖x ·T‖q = ‖x‖q.
Thus, every invertible matrix over Fq is an isometry for the rank norm. In
the following we will consider each basis of a field Fqm over some subfield F

will be a normal basis, i.e. bi = bqi
, i = 1, · · · ,m for some element b ∈ F.

In [24] Ourivski and Johansson presented two algorithms which solve
the general decoding problem in O

(
(k + d−1

2 )3(d−1
2 )3q(d−3)(m−(d−1)/2)/2

)
,

respectively O
(
(md−1

2 )3q(d−3)(k+1)/2
)

operations over Fq for [n, k, d] rank
distance codes over Fqm. However, there exists a class of rank distance
codes, named Gabidulin codes, for which an efficient decoding algorithm ex-
ists [18]. We will define these codes by their generator matrix. For ease of
notation we introduce the operator λf , which maps a matrix M = (mij) to
a blockmatrix:

λf : Fm×n
qm → F

m(f+1)×n
qm

M 7→




M

M[q]

...

M[qf ]


 ,

(8)

where M[x] := (mx
ij).

Definition 3.2 Let g ∈ Fn
qm be a vector s.t. the components gi, i = 1, · · · , n

are linearly independent over Fq. This implies that n ≤ m. The [n, k]
Gabidulin code G is the rank distance code with generator matrix

G = λk−1 (g) . (9)

An [n, k] Gabidulin code G has minimum distance d = n − k + 1 and
corrects errors of rank

⌊
n−k

2

⌋
. The vector g is said to be a generator vector

of the Gabidulin code G (It is not unique, as all vectors ag with 0 6= a ∈ Fqm

are generator vectors of G). Further, if T ∈ Fn×n
q is an invertible matrix, then

G · T is the generator matrix of the Gabidulin code with generator vector
gT. A error correction algorithm based on the “right Euclidian division



3.1 Rank Distance Codes 23

algorithm” runs in O
(
d3 + dn

)
operations over Fqm for [n, k, d] Gabidulin

codes [18]. The property, that a matrix G generates a Gabidulin code is
invariant under the operator Λf (M):

Lemma 3.3 If G is a generator matrix of an [n, k] Gabidulin code G with
k < n, then Λf (Gpub) is a generator matrix of the Gabidulin code with the
same generator vector as G and dimension min {n, k + f}.

Another nice property of Gabidulin codes is, that the dual code of an
[n, k] Gabidulin code is an [n, n − k] Gabidulin code (see [18]):

Lemma 3.4 Let G be an [n, k] Gabidulin code over Fqm with generator vec-
tor g. Then G has a check matrix of the form

H
⊤ = λn−k−1

(
h[1/qn−k−1]

)⊤
∈ Fn−k×n

qm .

Further, the vector h is uniquely determined by g (independent from k) up
to a scalar factor γ ∈ Fqm \ {0}. We will call h a check vector of G.

Proof. It is sufficient to prove, that if some h is in the dual space of the
[n, k] Gabidulin code Gk with generator vector g, then h[1/q] is in the dual
space of the [n, k − 1] Gabidulin code Gk−1 with generator vector g:

h ∈ G⊥
k ⇔ ∀i∈{0,··· ,k−1}

n∑

j=1

hjg
qi

j = 0 ⇒ ∀i∈{1,··· ,k−1}

n∑

j=1

h
1/q
j gqi−1

j = 0.

If F is a subfield of Fqm, the F-(subfield) subcode of G has check matrix
λn−k−1 ( hF ), where the matrix hF represents the check vector h of G by a
normal basis over F [16].

For any selection J of ñ ≥ k columns of the generator matrix G, the ma-
trix G•J defines an [ñ, k] Gabidulin code. For arbitrary vectors the selection
of certain columns allows to prove the following fact:

Lemma 3.5 If e ∈ Fn
qm is of rank norm t, then there exists an invertible

matrix T ∈ Fn×n
q , such that eT−1 is zero at the positions t + 1, · · · , n. It

follows that λk−1 (e) has rank min {k, t}.
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3.2 Interleaved Gabidulin Codes

In this section we introduce the general concept of interleaved codes and the
application to Gabidulin codes. To do so, we define the mapping φ, where
b1, · · · , bs is a basis of Fqms over Fqm:

φ : Fqsm → Fs
qm ,

x =
∑s

i=1 xibi, where xi ∈ Fqm 7→ (x1, · · · , xs)
⊤ .

Starting from an [n, k, d] code G over Fqm with generator matrix G, we build
a Fqm-linear code over Fqsm in the following way:

Definition 3.6 Let G be the generator matrix of an [n, k, d] code G over
Fqm, then the interleaved code GI consists of all vectors y ∈ Fn

qms , such that

[
φ(y1) · · · φ(yn)

]
=
[

φ(x1) · · · φ(xk)
]
G (10)

for some vector x ∈ Fk
qms . The parameter s is called the amount of inter-

leaving. It is easy to see, that the minimum distance between two vectors
of GI is at least d.

Let z = y+e with y ∈ GI and an error e ∈ Fn
qms of norm ‖e‖ ≤ (d−1)/2.

To correct the error e in z one can apply the error correction algorithm for
G to each

(φ(z1)i, · · · , φ(zn)i) = (φ(y1)i, · · · , φ(yn)i) + (φ(e1)i, · · · , φ(en)i) ,

i = 1, · · · , s and recover y afterwards.

3.2.1 Correcting Rank Errors Beyond Minimum Distance

In [30] the authors present two algorithms for correcting rank errors beyond
minimum distance in interleaved Gabidulin codes. Here, we present the
probabilistic algorithm proposed by the author, the success probability of
which depends on the input, only.

Let GI the interleaved code build from an [n, k] Gabidulin code G over
Fqm with amount of interleaving s. Further, let z = y+e, where y ∈ GI and
e ∈ Fn

qms is of rank norm t < n − k. For error correction we compute the
vector space

He :=

[
λn−t−2 (g)

λn−k−t−1 (φ(z))

]⊥
=

[
λn−t−2 (g)

λn−k−t−1 (φ(e))

]⊥
. (11)

This vector space has a very useful property:
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Lemma 3.7 If λn−k−t−1 (φ(e)) has rank t, then every vector he ∈ He \{0}
has rank norm n−t. Further, if for an invertible matrix T the first t positions
of heT

⊤ are zero, then the last n − t positions of eT−1 are zero.

Proof. Fist note, that λn−t−2(g) has rank n−t−1. Thus, if λn−k−t−1 (φ(e))
has rank t, then He has dimension one. Let Te be a isometry such that the
last n− t columns of eT−1

e are zero and he be the vector spanning He. Then
the first t entries of heT

⊤
e are zero and (heT

⊤
e ){t+1,··· ,n} is the check vector

of an [n − t, n − t − 1] Gabidulin code. Thus, he has rank norm n − t.
Second, if T is of the above form, then λn−k−t−1(φ(e))T−1 · Th⊤

e = 0. Let t̂
be the rank of λn−k−t−1(eT−1)•{t+1,··· ,n} over Fq and Fqm (compare lemma

3.5). Then, there exists an invertible matrix T̂ ∈ F
(n−t)×(n−t)
q , such that

the matrix λn−k−t−1(eT−1)•{t+1,··· ,n}T̂
−1 is zero at the n − t − t̂ rightmost

positions. Consequently, the vector (heT
⊤)•{n−t,··· ,n}T̂

⊤ of rank norm n− t

is in its dual, which can only be if t̂ = 0.

Thus, from each he ∈ He we can derive an invertible matrix T ∈ Fn×n
q

such that the n− t leftmost columns of eT−1 are zero. Computing T can be
done in O(n3) operations as it requires only solving some linear equations,
compare [39]. This is sufficient for error correction:

Lemma 3.8 Let T ∈ Fn×n
q be such that the last n − t positions of eT are

zero. Then, for the vector x ∈ Fqms defining y by equation (10) the following
equation holds:

[
φ(x1) · · · φ(xk)

]
(GT)•{t+1,··· ,n} =

[
φ((zT)t+1) · · · φ((zT)n)

]
.

Proof. The lemma follows from the fact that (eT){t+1,··· ,n} = 0 yields that
(zT){t+1,··· ,n} = (yT){t+1,··· ,n}.

The error correction procedure is summarized in algorithm 3.2.1. As al-
gorithm 3.2.1 only requires solving some linear equations it has runtime
O(n3) operations. The correctness follows from lemmas 3.7 and 3.8 if
the rank of λn−k−t−1 (φ(e)) is t. It remains to determine the rank of
λn−k−t−1 (φ(e)). After [46] (compare lemma 3.13) the rank of φ(e) is s
with probability

s−1∏

i=0

(
qmt − qmi

)

qmt
≥
(

qmt − qms

qmt

)s

.
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Algorithm 3.2.1 Decoding Interleaved Gabidulin codes

Input: z = y + e with y ∈ GI and e of norm t < n − k.
Output: y ∈ GI or failure.

Compute He as in equation (11).
if dimHe > 1 then

return failure
else

Compute a vector h of rank norm ≥ k in He.
Compute an invertible matrix T ∈ Fn×n

q , such that (hT⊤){1,··· ,t} = 0.
Set T = T−1.
Solve the equation from lemma 3.8 to compute the vector y.
return y

As we will see later (theorem 3.11), it follows that with probability

≥
(

1 − 4

qm

)(
qmt − qms

qmt

)s

(12)

the matrix λn−k−t−1 (φ(e)) has rank min {(n − t − k)s, t}. We conclude:

Theorem 3.9 Let GI be the interleaved code build from the [n, k] Gabidulin
code G over Fqm, where s is the amount of interleaving. If s ≪ (n − k),
correction errors in GI of rank up to

t =
s

s + 1
(n − k)

with algorithm 3.2.1 succeeds with probability given in equation (12).

A possible parameter set would be q = 2, m = n = 24, k = 10 and s = 6.
In this setting, the correction of errors of rank 12 with algorithm 3.2.1 fails
in less than one of 222 cases.

Remark 3.10 If s = 1, then GI = G is an [n, k, d] Gabidulin code. If further
the conditions of the above theorem are true, algorithm 3.2.1 never fails as
the rank of λn−k−t−1(φ(e)) is t ≤ (n−k)/2, see lemma 3.5. Thus, algorithm
3.2.1 can be used to correct errors of rank up to the standard bound (d−1)/2
in cubic time.
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3.2.2 The Probability of Correct Decoding

To determine the probability of correct decoding we need to determine a
upper bound for the probability, that the rank of λn−k−t−1 (φ(e)) has rank
smaller than t. This probability is lower than the one that the rank of
λ⌊ t−1

s ⌋ (M) is smaller than t if M is a random s× t matrix over Fqm with full

rank over Fq. For easier notation we write ‖M‖q if we refer to the rank of
M over Fq, and analogous ‖M‖qm for the rank of M over Fqm. Our goal is to
prove the following theorem:

Theorem 3.11 Let M be a random s × t matrix over Fqm with s ≤ t ≤ m.
Then

Prob
(

‖λf (M)‖qm < t ‖M‖q = t
)
≤ 4

qm
,

where f =
⌊

t−1
s

⌋
.

As a direct consequence, we can bound the following probability, too:

Lemma 3.12 Let M be a random s × t matrix over Fqm with s ≤ t ≤ m.
Then for all k

Prob
( ‖λk (M)‖qm < min {s(k + 1), t} ‖M‖q = t

)
≤ 4

qm
.

Before we are going to prove the theorem, we would like to recall the
following fact:

Lemma 3.13 The fraction of all m × n matrices over Fq which have full
rank is larger than 0.288.

Proof. Considering all m×n matrices over Fq, the fraction of the matrices
of rank k is

1

qmn

k−1∏

j=0

(
qm − qj

) (
qn − qj

)

(qk − qj)
,

see [46]. With the results from [11] we get the following bound for the
fraction of i × i matrices of full rank:

1

qi2
·

i−1∏

j=0

(
qi − qj

)
=

i∏

j=1

(
1 − q−j

)
≥ 0.288788,

which we will approximate by 1/4 in the following.
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Unfortunately, we are not able to count the number of matrices M with
‖λf (M)‖qm < t directly. Thus, we have to rewrite the condition:

Lemma 3.14 For any s×t matrix M over Fqm with s ≤ t ≤ m and ‖M‖q =
t, the following two statements are equivalent:

‖λf (M)‖qm < t (13)

⇐⇒

∃h∈F
n
qm ,‖h‖q>f+1∀α∈F

×

qm

(
λf (αh) · M⊤ = 0

)
. (14)

Proof. The proof for (14) ⇒ (13) is quite simple and based on the following
observation for two vectors h,m ∈ Fn

qm:

(
hm⊤ = 0 ∧ h[q]m⊤ = 0

)
⇒
(
h[q](m[q])⊤ = 0 ∧ h[q]m⊤ = 0

)
.

From that, it follows immediately, that if a h exists, such that (14) is fulfilled,

then h[qk] is in the dual space of λk (M) for all 0 ≤ k ≤ f .
To proof (14) ⇐ (13), we observe first, that it follows from (13), that there
exists an h ∈ Fn

qm in the dual space of λf (M). Consequently all αh with

α ∈ F×
qm are in that space, too. Using the fact, that

(
mh⊤ = 0 ∧ m[q]h⊤ = 0

)
⇒
(
mh⊤ = 0 ∧ h[1/q]m⊤ = 0

)
,

we conclude, that

(13) ⇒ ∃h∈Fqm∀α∈F
×

qm

(
λf (αh) · M⊤ = 0

)
.

It remains to show, that such an h of norm ‖h‖q > f + 1 exists. If
‖h‖q = r ≤ f + 1, then there exists an invertible matrix T ∈ Ft×t

q , such
that the matrix λf (h) T has non-zero entries in the r rightmost columns,
only. Since the submatrix of λf (h)T consisting of the r rightmost columns
has full rank, the r rightmost columns of T−1M⊤ have only zero entries,
which is a contradiction to the premise that ‖M‖q = t. We conclude, that
h has rank norm > f + 1, which proves the lemma.

With this modified statement, we are able to give an upper bound of the
number of matrices M, where ‖λf (M)‖qm < t. By this, we can finally prove
the theorem:
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Proof. (of Theorem 3.11) To compute the probability of (14) we first
determine the probability, that for a fixed h ∈ Fn

qm with ‖h‖q > f + 1 we
have (

λf (αh) · M⊤ = 0
)

.

if M is a random s × t matrix with ‖M‖q = t. As the rank of λf (h) over
Fqm is exact f + 1, there exist at most (qm)s(t−f−1) possibilities to choose
M, such that the condition above is fulfilled. After lemma 3.13, there are
more than 1

4 · (qm)st possibilities to choose a random s × t matrix M with
‖M‖q = t. Thus, for a fixed h, the probability, that the condition above is
fulfilled for a random s × t matrix M of full rank over Fq is smaller than

4 · (qm)−s(f+1).

Now we determine the number of different vector spaces 〈λf (h) 〉 defined
by some h ∈ Fn

qm, where the norm of h is not to small. This number is
smaller than

(qmt − 1)/(qm − 1) ≈ qm(t−1),

as h 6= 0 and all αh with α ∈ F×
qm define the same vector space. Thus,

the probability, that the condition (14) is fulfilled for a random matrix M is
smaller than the sum of the probabilities for the fixed h over the possible
different vector spaces they define. As by lemma 3.14 we have (14) ⇔ (13),
we get the following bound:

Prob
(

‖λf (M)‖qm < t ‖M‖q = t
)

≤ qm(t−1) · 4 · (qm)−s(f+1).

≤ 4 · q−m,

which proves the theorem.

Note, that theorem 3.11 gives an estimation of the number of subspace
subcodes of [n, k] Gabidulin codes over Fqm, which do not have minimal
dimension. For n = m it was already proven in [16], that this number is 0.

Lemma 3.15 Let G be an [n, k] Gabidulin code over FqN , where N = ms >
n. Then, the probability that the Fqm-subcode of G has dimension larger than
min {0, n − s(n − k)} is smaller than 4/qm.

Proof. The Fqm-subcode of G has a check matrix of the form λn−k−1 (M),
where the i-th column of M ∈ Fs×n

qm represents the i-th entry of the generator
vector of G over Fqm, e.g. by employing φ. Thus, the lemma follows directly
from theorem 3.11.
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3.3 The GPT Cryptosystem

The GPT cryptosystem was first presented at Eurocrypt’91 by Gabidulin,
Paramonov and Tretjakov [18]. We present the more general version devel-
oped by the author in 2005 (GGPT, see [39]) first, which may be used to
describe the original GPT cryptosystem as well as the variant with column
scrambler (CS-GPT, [14]) from 2003. Afterwards we give descriptions of
the latter ones according to the results of [39].

• System Parameters: q, m, n, k, t and s ∈ N, where k < n ≤ m,
t < n − k − 1 and s ≤ min {t, k}

• Key Generation: First generate the following matrices:

G ∈ Fk×n
qm generator matrix of an [n, k, d] Gabidulin code,

X ∈ Fk×t
qm random matrix of rank s over Fqm and rank t over Fq,

S ∈ Fk×k
qm random, non-singular matrix (the row scrambler) and

T ∈ Fn×n
q random, non-singular matrix (the column scrambler).

Then compute the k × n matrix

Gpub = S
([

X 0
]
+ G

)
T

= S
[

G•{1,··· ,t} + X G•{t+1,··· ,n}

]
T ∈ Fk×n

qm ,
(15)

where 0 denotes the k × (n − t) zero matrix. Choose r = n−k−t
2 .

Further let DG be an efficient decoding algorithm for the Gabidulin
code G generated by the matrix G•{t+1,··· ,n}.

• Public Key:
(
Gpub, r

)

• Private Key: (DG ,S,T) or (G,S,T) where G is of the form in (9).

• Encryption: To encode a plaintext x ∈ Fk
qm choose a vector z ∈ Fn

qm

of rank norm r at random and compute the ciphertext

y = xG
pub + z .

• Decryption: To decode a ciphertext y apply the decoding algorithm
DG for G to y′ =

(
cT−1

)
{t+1,··· ,n}

. As T is an invertible matrix over

Fq, the rank norm of a vector does not change if it is multiplied with
T−1. Thus y′ has at most rank distance n−k−t

2 to G and we obtain the
codeword

xSG•{t+1,··· ,n} = DG

(
y′
)

.

Now, we can compute the plaintext x.
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Parameters size public key WF general
m k t s in bytes decoding

48 10 16 3 2, 880 2134

48 16 18 4 1, 608 2124

64 8 40 1 3, 584 287

Table 3.8: Previously proposed parameters for GPT / GGPT

The distortion matrix X may be seen as a matrix of artificial errors
(compare table 1.1) and is essential to mask the structure of G. Otherwise, a
check vector h may be revealed from SGT by computing h = λn−k−1(SGT)⊥.
Example parameter sets may be found in table 3.8, where n = m and q = 2
(WF = operations over Fq) .

We would like to draw the readers attention to the fact, that Gpub may
be viewed as an erroneous codeword of an interleaved code with interleaving
degree k. Here, however, the error [X|0] T does not have full rank (i.e.
min {t, k}) over Fqm, but s. An attacker trying to recover the original secret
key is thus faced to correct an considerable error in a code he does not
know. Nevertheless, it is not necessary to know the secret key to recover the
plaintext from a ciphertext, as we will show in the following.

3.3.1 Simple Variants of GPT

The original approach of the GPT cryptosystem was to choose the parame-
ters r and t such that r = n−k

2 − t. If one does so, the legitimate user may
recover xSGT by applying the error correction algorithm for 〈GT〉 (which is
a Gabidulin code, too) to the ciphertext y. An alternative description of
the public generator matrix would be Gpub = S ( G̃+ X̃ ), where G̃ = GT and
X̃ =

[
X 0

]
T.

Another variantis the CS-GPT: G, X and S are chosen s.t. all entries of
Gpub are in a subfield FSUB of Fqm (this is not a subfield subcode version).
In this case, the plaintext and random errors z are chosen from FSUB as well.
This saves space when storing the public key. The most common instances
of CS-GPT are the ones, where the public generator matrix may be written
as

G
pub = S

[
Y G̃

]
· T ∈ Fk×n

SUB,

where Y ∈ Fk×t
SUB is arbitrary, G̃ ∈ F

k×(n−t)
SUB defines an [n − t, k] Gabidulin

code and S is in Fk×k
SUB. The latter can be interpreted as adding random
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redundancy to the secret code.
Following the guidelines from table 1.1 one could try to publish only a

subcode of the GGPT public key [36]. In this case, one might even try to
omit the column scrambler and the distortion matrix, which leads to the
Niederreiter GTP.

A further intuitive variant would be to use subfield subcodes for GPT.
However, as already mentioned in section 3.1, the subfield subcode of a
Gabidulin code can be defined by the operator λf , too. It follows, that any
subfield subcode version of GPT would be very similar to the other GPT
variants, compare [37]. However, for them, a different error correction pro-
cedure is possible. This approach is generalized in the concept of reducible
rank codes.

3.3.2 The RRC-GPT Variant

In [17], the authors proposed to substitute the underlying code by a reducible
code (RRC-GPT). Unlike all other variants, the RRC-GPT is an extension
of the concept of GPT, whose instances may not be expressed by the means
of GGPT.

Definition 3.16 Let Gi = 〈Gi〉, i = 1, · · · , w be a family of [ni, ki, di] codes
over Fqm. Then the (linear) code G given by the generator matrix of the
form

G =




G1 0 · · · 0

Y21 G2 · · · 0

...
. . .

...
Yw1 Yw2 · · · Gw


 ∈ F

P
ki×

P
ni

qm

for some matrices Yij ∈ F
ki×nj

qm is called a reducible code. This code is an
[n =

∑w
i=1 ni, k =

∑w
i=1 ki, d = min1≤i≤w {di}] code. Error correction may

be done in sections, starting from the right. If all codes Gi are rank distance
codes, we call G a reducible rank code.

Reducible rank codes build from Gabidulin codes are strongly connected to
subfield subcodes of Gabidulin codes:

Remark 3.17 A Fqm-subfield subcode of an [n, k] Gabidulin code over
Fq2m , where k > m is a reducible rank code up to isometry. Further, every
reducible rank code build from w = 2 Gabidulin codes, where Y21 = 0 and
d2 ≤ d1 is a subcode of (a Fqm-subcode of) an [n, n − (n2 − k2)] Gabidulin
code over Fq2m .
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This observation holds analogous for reducible rank codes build from more
than two Gabidulin codes. Considering the structure of the mentioned sub-
field subcodes and the possibility to correct the errors by section, a special
distortion matrix may be applied to hide the structure of the code:

In the examples from [17] the authors propose to take two Gabidulin
codes G1 and G2 over Fqm (with length ni and dimension ki, i = 1, 2) and
Y21 = 0 to build a reducible rank code G. As public generator matrix they
choose

G
pub = S

(
G +

[
X1 0

Y1 X2

])
T , (16)

where S ∈ Fk×k
qm and T ∈ Fn×n

q are non-singular, Y1 ∈ F
k2×n1

qm is arbitrary

and the rank of Xi ∈ F
ki×ni
qm over Fq is less than ti for i = 1, 2. Using this

construction, the authors of [17] propose that the random errors added at

encryption should have a rank less than r = mini=1,2

(
ni−ki

2 − ti

)
, where

en- and decryption work as with GGPT. The authors of [17] claimed every
parameter set with mi ≥ 24 and r ≥ 4 to provide sufficient security, even if
X1 and X2 are zero matrices. They propose to choose m = n1 = n2 = 24,
k1 = k2 = 14, t1 = t2 = 1. Note, that because of the use of the col-
umn scrambler, we may choose Xi s.t. only the first ti columns contain
non-zero entries. All other choices correspond to an equivalent private key
with Xi of the desired form and different T and G. This allows to choose
r = mini=1,2 {(ni − ki − ti)/2} like for GGPT. Several other modifications
like e.g. a subcode variant are possible as well. Further, analogous to the
construction above, one might choose to build the reducible rank code from
w > 0 Gabidulin codes and an adapted distortion matrix as already men-
tioned in [17]. In the case of w = 1, this leads to GGPT. However, we will
distinguish between GGPT and RRC-GPT for the ease of comprehensibility.

3.4 Ciphertext Attacks for GPT

Even if the previously known attacks work well for some parameter sets,
they still fail for others. In this section we develop an new kind of attack
on GPT-like PKCs. Previously, only general decoding attacks or structural
attacks (i.e. the ones aiming to recover the secret key from the public key)
have been considered. We, however, attack ciphertexts by taking advantage
of the recently presented method for decoding interleaved Gabidulin codes
beyond minimum distance [30]. Our new attack is superior to all previous
attacks: It runs in cubic time and works for all parameter sets of all variants
of GPT.
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3.4.1 Attacking Ciphertexts of GGPT

Let (Gpub, r) be the public key of an instance of GGPT. Further, let the
ciphertext y be of the form y = xGpub + z, where z =

[
Z 0

]
T
−1
Z is

of rank norm r with Z ∈ Fr
qm and TZ ∈ Fn×n

q invertible. To recover the
plaintext, an attacker may use a modified version of the error correction
procedure for interleaved codes [30]. The major difference is that we use a
matrix and not a vector to identify the error vector: We define the space

Hz =

[
λr−1

(
Gpub

)

λr−1 (y)

]⊥
=

[
λr−1

(
Gpub

)

λr−1 (z)

]⊥
. (17)

The attack on GGPT is given in algorithm 3.4.1 and succeeds for all param-
eter sets in polynomial time.

Algorithm 3.4.1 Attacking Ciphertexts of GPT-like Cryptosystems

Input: A ciphertext y and the corresponding GGPT public key (Gpub, r).
Output: The plaintext x.

Compute the matrix Hz generating Hz of rank p > k over Fq.

Compute an invertible matrix T̂ ∈ Fn×n
q , such that (HzT̂

⊤){1,··· ,n−p} = 0.

Set T̂ = T̂−1.
Solve the equation xGpubT̂•{n−p+1,··· ,n} = yT̂•{n−p+1,··· ,n}.
return x

Theorem 3.18 Algorithm 3.4.1 works correct and has a runtime complexity
of O(n3) operations over Fqm.

Proof. Obviously, λr−1 (z) has rank r (lemma 3.5), and thus for all vectors
hz ∈ Hz: (

hzT
⊤
Z

)
{1,··· ,r}

= 0.

Therefore, the matrix Hz generating Hz has rank p < n − r over Fq. Now
we assume, that p ≥ k. We will prove this assumption in lemma 3.19.
Let T̂ ∈ Fn×n

q be an invertible matrix satisfying that only the p rightmost

columns of HzT̂
⊤ contain non-zero entries. Such a T̂ is easy to recover from

Hz by solving linear equations (compare [38]). It follows analogous to lemma
3.7, that the p rightmost positions of yT̂−1 have no influence from the er-
ror z. This is sufficient for identifying x since the p rightmost positions of
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GpubT̂−1 contain an information set (i.e. the rank of (GpubT̂−1)•{n−p+1,··· ,n}

is k).

We prove our estimation of the rank of Hz:

Lemma 3.19 With the notations above: There exists at least one vector of
rank norm ≥ k in Hz.

Proof. The secret key holder has to correct the error vector

(
zT−1

)
{t+1,··· ,n}

of rank norm ≤ r in the secret code. Thus, there exists an invertible matrix
T̃ ∈ Fn×n

q , such that

[
X 0

]
TT̃

−1 =
[

X 0
]

and
(
zT̃−1

)
J

= 0,

where J = {t + r + 1, · · · , n}. Now, let hJ be some check-vector of the

[n−t−r, k+r−1] Gabidulin code λr−1

(
GTT̃−1

)
•J

, then
(

0 hJ

)
(T̃−1)⊤

is in Hz and has rank norm n − t − r = k + r ≥ k.

We made a large number of experiments with a proof of concept Java
implementation of our attack. For parameters from table 3.8 we considered
random instances, that is G,S,T and X were randomly chosen from the
uniform distibution over the possible matrices. For this and all following
experiments we used a standard laptop at 1500 MHz. Timings are given in
table 3.9.

Parameters average runtime average runtime
m k t s decryption algorithm 3.4.1

48 10 16 3 3 seconds 420 seconds
48 16 18 4 3 seconds 450 seconds
64 8 40 1 8 seconds 260 seconds

Table 3.9: Attacking the GGPT cryptosystem

Note, that the attack is applicable even if the column scrambler S is not
of quadratic form (like in the case of the Niederreiter GPT) or if the matrix
G is replaced by a generator matrix of a subfield subcode of a Gabidulin
code. However, in the case of RRC-GPT the situation changes:
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3.4.2 Attacking Ciphertexts of RRC-GPT

Let (Gpub, r) now be a public key of an instance of RRC-GPT as given in
equation (16). Analogous to GGPT, a ciphertext has the form y = xGpub+z,
where z =

[
Z 0

]
T
−1
Z is of rank norm r with Z ∈ Fr

qm and TZ ∈ Fn×n
q

invertible. To recover the message, an attacker can view the space Hz as in
equation (17). Again, for all vectors hz ∈ Hz:

(
hzT

⊤
Z

)
{1,··· ,r}

= 0.

In the case where no distortion matrix is used, we are able to show that the
message x can always be recovered from y in polynomial time. On input of
z and (Gpub, r) to algorithm 3.4.1 two cases may appear. Either, the matrix
Hz is of sufficiently large rank over Fq or the algorithm fails in the first step.
However, if algorithm 3.4.1 fails, the secret key is revealed:

Theorem 3.20 With the notations above: Let t1 = t2 = 0, then x may be
revealed in O(n3) operations over Fqm since one of the following statements
holds:

(i) ∀hz∈Hz

(
hz(T

−1)⊤
)
{1,··· ,n1}

= 0 (algorithm 3.4.1 fails) or

(ii) ∃hz∈Hz

(
hz(T

−1)⊤
)
{1,··· ,n1}

6= 0 (algorithm 3.4.1 succeeds).

Proof. Analogous to lemma 3.19, one can show, that there always exists a

ĥz ∈ Hz of rank norm k2 + r, such that
(
ĥz(T

−1)⊤
)
{1,··· ,n1+t2}

= 0 (even

for arbitrary t1 and t2). Thus, in the first case one can recover a matrix
T̃ ∈ Fn×n

q , such that the last k2 + r columns from GpubT̃−1 have no influ-
ence from the columns corresponding to G1 and thus allow to recover S. In
consequence, T may be revealed, which is sufficient to recover x.
In the second case,

(
hz(T

−1)⊤
)
{1,··· ,n1}

is in the dual of λk1+r−2 (g1), where

g1 is the generator vector of G1. Thus, hz has rank norm ≥ k1 +r. Combin-
ing this with the observations for the first case, we conclude that a matrix
generating Hz has to have rank ≥ k1 + k2 + 2r over Fq and thus algorithm
3.4.1 returns the correct message x.

If t 6= 0, the security analysis is more complicated. However, even if we
are not able to show that x be recovered in every case, we want to point out
why we conclude that no secure instances of RRC-GPT exist:
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Remark 3.21 With the notations above, let t1 and t2 be arbitrary, then
one of the following conditions is true:

(i) The rank of Hz over Fq is R ≥ k1 + k2 or

(ii) Hz reveals S with high probability.

It follows, that we can recover x from Hz with high probability.

Proof. In the first case, one can derive a non-singular matrix T̃ ∈ Fn×n
q

from Hz in cubic time, such that the last R positions of zT̃ are zero. If the
last R columns of GpubT̃ contain an information set (which is the case with
high probability), this reveals x.

In the second case, the rank R of Hz is < k1 + k2. Thus, an attacker
may compute an invertible matrix T̃ ∈ Fn×n

q from Hz, such that the last

R positions of zT̃ are zero. However, the observations from theorem 3.20
show, that the last R columns of GpubT̃ are of the form

S

[
A 0

B GR

]
TR ∈ F

(k1+k2)×R
qm

for some generator matrix GR of an Gabidulin code of dimension k2 and
length nR ≥ n2− t2−r > k2, some arbitrary matrices A and B over Fqm and

TR ∈ FR×R
q invertible. It follows, that A is in F

k1×(R−nR)
qm with R−nR < k1.

Now, A will be of full rank with high probability, which reveals TR and thus
S. (However, even if the rank of A is not R − nR, then we can use the
methods described in [38] to reveal S if λr−1(A) is of full rank.) If we know
S, then it is easy to recover a possible secret key and by this the plaintext x.

The remark above shows, that we can either recover a considerable frac-
tion of plaintexts from the ciphertexts, or the secret key is revealed at some
point. Further, we would like to point out, that in the case where the re-
ducible rank code is build from more than two Gabidulin codes, analogous
considerations hold. We omit giving timings for this attack since there were
no serious parameter proposals after the attack from [37]. For random in-
stances of the initial example from [17] algorithm 3.4.1 fails after about 380
seconds, revealing the private key.

3.5 Structural Attacks for GPT and variants

The fact that we can use nearly the same algorithm for correcting errors
in Gabidulin codes and for attacking ciphertexts of GPT-like cryptosystems
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indicates the existence of structural attacks. We do not want to omit the
latter, as these might lead to interesting results in coding theory.

Structural attacks take advantage of the main weakness of GPT in com-
parison with the McEliece PKC: Unlike Goppa codes, Gabidulin codes are
highly structured. This property can be used, to distinguish a Gabidulin
code from a random one (compare lemma 3.3 and 3.12).

Previous structural attacks fail short to recover a valid secret key from
the public key in a feasible number of operations for all parameter sets. We
first present the results of the former attacks and present our new attacks
afterwards, which work for all possible variants of cryptosystems build from
Gabidulin codes. The new attacks we are going to present vary slightly from
the ones published by the author in [38] and [37] and are more powerful.

3.5.1 Gibson’s Attacks

Gibson presented two structural attacks on the GPT cryptosystem. They
recover an alternative private-key from the GGPT public-key Gpub. On
input of Gpub = S

([
X 0

]
+ G

)
T, Gibson’s attacks return Ĝ, X̂ ∈ Fk×n

qm

and Ŝ ∈ Fk×k
qm , satisfying that

(i) Ĝ is a generator matrix of an [n, k] Gabidulin code over Fqm,

(ii) Gpub = Ŝ

(
Ĝ + X̂

)
and

(iii) the rank of X̂ over Fq is not bigger than t.

Thus Gibson’s attacks serve well for an attack on the GGPT cryptosystem,
as an alternative column scrambler may be recovered from X̂. Gibson’s first
attack was developed for the case that the GGPT parameter s is very small.
It is a variation of the approach for GPT without distortion matrix (s = 0),
which recovers a generator vector of a Gabidulin code from its systematic
generator matrix by solving some linear equations. If the parameter s is
small enough, the attacker can guess some unknown values to eliminate the
effect of the distortion matrix. This first attack takes

O
(
m3 (n − k)3 qms

)
(18)

operations over Fqm . In [22] Gibson presented a different attack, which
analyzes matrices of the form G + G[q]. This attack is more efficient for
larger values of s. It runs in

O
(
k3 + (k + t) f · qf(k+2) + (m − k) t · qf

)
(19)
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operations over Fqm, where f ≈ max (0, t − 2s, t + 1 − k). Note, that this
attack runs in polynomial time iff f = 0. The success of both attacks is
based on some assumptions, which are claimed to be fulfilled with high
probability for random instances of the GGPT cryptosystem. Nevertheless
Gibson’s attacks are not fast enough to attack the GGPT cryptosystem for
all parameter sets of practical interest.

3.5.2 Ourivski’s Attack on the Niederreiter Variant

In 2003 A. Ourivski chose an approach similar to the one of the first attack
from Gibson. He analyzed the public key and was able to recover the secret
key by guessing some values and solving some linear equations afterwards.
The number of elements an attacker has to guess using Ourivski’s attack is
expressed by the parameter f below.

Without loss of generality we may assume, that the public check matrix
of an instance of the Niederreiter GPT is of the following form:

H
pub =




0
H Idl

Ã


 ∈ Fn×l

qm ,

where Ã ∈ F
(k−l)×l
qm , Idk denotes the k-dimensional identity matrix and H is

a check matrix of the secret Gabidulin code. Let v ≤ l be the column-rank
of Ã over Fq and a ≤ min {v, k − l} be the rank of Ã over Fqm. Ourivski’s
attack takes

O
(
3m3 + nf · qm(f−1)

)

operations over Fq, where f ≈ v + 1−min {v, a (n − k)} for most instances.
Even if no proof is given, experiments corroborate Ourivski’s estimation of
f . Because 0 ≤ v ≤ l, this attack runs in polynomial time, iff l ≤ a(n − k).
Ourivski states, that the parameter a should not be to small (≥ 3), as
otherwise a different attack approaches can be used to recover a private key.
Thus, for the worst case with fixed a, the work factor for Ourivski’s attack
is

O
(
3m3 + nl · qm(l−O(1)(n−k))

)
.

3.5.3 Attacking the Niederreiter Variant in Polynomial Time

Even if Ourivski’s attack on the Niederreiter GPT works well, it still
has exponential work factor for special parameter sets. Nevertheless, it is



40 3 RANK DISTANCE CODES AND CRYPTOGRAPHY

not the only way to recover the secret key for the Niederreiter GPT. We
present a variation of an earlier attack by the author [38], which recovers an
alternative secret key in polynomial time.

Theorem 3.22 Let G
pub
SUB be the k − ℓ dimensional subcode of an [n, k]

Gabidulin code G over Fqm defined by an instance of the Niederreiter GPT.

Then we may recover a Gabidulin code Ĝ which contains GSUB from GSUB

in O
(
n3
)

operations over Fqm.

Proof. Let GSUB be the generator matrix of GSUB, then λn−k−1(GSUB) is a
subcode of an [n, n−1] Gabidulin code. It follows, that (λn−k−1(GSUB))⊥ =
Ĥ contains a vector ĥ of rank norm n. It might not be easy to determine
such a vector over Fqm. Yet it is easy to find such a vector over Fqam, where

a ≤ dim Ĥ as any matrix generating Ĥ represents such a ĥ over Fqm. From
the simple observation that for all a,b ∈ Fn

qm : (ab⊤ = 0 ∧ a[q]b⊤ = 0) ⇔
(a[q](b[q])⊤ = 0 ∧ a[q]b⊤ = 0) it follows that GSUB is in the vector space

spanned by the rows of (λn−k−1(ĥ
[1/qn−k−1]))⊥, which is a [n, k] Gabidulin

code. Thus, we have found a valid secret key in O
(
n3
)

operations over Fqm .

Since there were no proposals for parameter sets for the Niederreiter
GPT after Ourivski’s attack, we did not carry out any experiments for this
variant of GPT.

3.5.4 Recovering GGPT Private Keys in Polynomial Time

As we have seen in the previous section, the structure of Gabidulin codes
allows to recover the original code from a subcode. The same holds for dis-
torted Gabidulin codes like the public key of most GPT variants. In the
following let

(
Gpub, r

)
be the public key of an instance of the GGPT cryp-

tosystem with parameters q,m, n, k, t and s and (G,S,T) be a corresponding
secret key as in section 3.3. The attack strategy is always the same and can
be summarized in algorithm 3.5.1.

Note that this is a minor variation of the attack published by the author
in [38]. In the following we will show that this strategy indeed allows an
attacker to build a valid secret key.

A crucial point for this type of attacks on the private key of GGPT is
the analysis of the structure of the dual of Λf (Gpub). It will show, that
the second step of algorithm 3.5.1 does not fail. The structure of Λf (Gpub)
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Algorithm 3.5.1 Structural attack GGPT

Input: A GGPT public key (Gpub, r).
Output: A secret key for (Gpub, r).

Compute Λf (Gpub)⊥ for f = 2r − 1.

Choose a vector h ∈ Fn
qam dual to Λf (Gpub) of rank norm N ≥ n − t.

Compute an invertible T̂ ∈ Fn×n
q s.t. ĥ{1,··· ,n−N} = 0, where ĥ = hT̂⊤.

Build the [N,N − (n− k)] Gabidulin code Ĝ = 〈 Ĝ 〉 with check vector ĥ.

Compute Ŝ ∈ F
k×N−(n−k)
qm satisfying ŜĜ = (GpubT̂−1)•{n−N+1,··· ,n}.

Return the secret key
(
DbG , Ŝ, T̂

)
for (Gpub, r).

depends mainly on f and the k × t distortion matrix X of rank s, which
is used during the key generation phase of GGPT. We want to remind the
reader that n − t − k = 2r.

Lemma 3.23 For 0 ≤ f ≤ 2r − 1 there exists a dual matrix of Λf (Gpub) of
the form

Λf (Gpub)⊥ =

[
0 H⊤

f

B1 B2

]
·
(
T
−1
)⊤ ∈ F

(2r−f+ℓ)×n
qm , (20)

where Hf ∈ F
(n−t)×(2r−f)
qm is the check matrix of a k+f dimensional Gabidulin

code Gf of length n − t, B1 is some ℓ × t matrix with 0 ≤ ℓ ≤ t and B2 is
some ℓ × (n − t) matrix.

Proof. First, we assume, that T and S are the identity matrix. The proof
is analogous, if this is not the case. We may write

Λf (Gpub) = [ Λf

(
G•{1,··· ,t} + X

)
︸ ︷︷ ︸

t

| Λf

(
G•{t+1,··· ,n}

)
︸ ︷︷ ︸

n−t

] ∈ F
(k(f+1))×n
qm

By lemma 3.3, the last n − t columns of Λf (Gpub) define an [n − t, k + f ]
Gabidulin code Gf . Thus the subvectorspace spanned by the rows of

[
0 H⊤

f

]
∈ F

(2r−f)×n
qm ,
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where Hf ∈ F
(n−t)×(2r−f)
qm is the check matrix of Gf , is in the dual space of

Λf (Gpub). To get a matrix which defines the whole dual space of Λf (Gpub),
we might have to add some more rows to

[
0 H⊤

f

]
, which already has rank

n− t over Fq. However, it is clear, that there will be at most t rows missing,
as Λf (Gpub) has at least rank k + f . This proves the theorem.

The lemma yields the existence of a vector h of rank norm N ≥ n − t
in Λf (Gpub)⊥ for f = 2r − 1. (Such a h is easy to recover over an extension
field Fqam of Fqm with a < n.) Consequently the second step of our attack
can be done in O(n3) operations and does not fail. It remains to show, that
every choice of h leads to a valid alternative secret key for the public GGPT
key Gpub.

Theorem 3.24 Let f = 2r− 1, h ∈ Λf (Gpub)⊥ be of rank norm N ≥ n− t.

Further, let T̂ ∈ Fn×n
q such that for ĥ = hT̂⊤: ĥ1,··· ,n−N = 0. Then, ĥ is

the check vector of the Gabidulin (sub-)code defined by the last N columns
of GpubT̂−1. Thus, algorithm 3.5.1 returns a valid secret key.

Proof. As in the proof of theorem 3.22, we use again the fact, that for all
a,b ∈ Fn

qm:

(ab⊤ = 0 ∧ a[q]b⊤ = 0) ⇔ (a[q](b[q])⊤ = 0 ∧ a[q]b⊤ = 0).

It follows, that ĥ[1/qf−i] ∈ λi(G
pubT̂−1)⊥ for all i = f, f − 1, · · · , 1 and thus

Ĥ
⊤ := λf

(
ĥ[1/q2r−1]

)
⊆ (Gpub

T̂
−1)⊥.

As the N last rows of Ĥ⊤ form a check matrix of an [N,N−(n−k)] Gabidulin
code Ĝ, the matrix (GpubT̂−1)•{n−N+1,··· ,n} generates (a subcode of) Ĝ.

From the theorem, one can see, that (GpubT̂−1)•{n−N+1,··· ,n} is indeed a

(sub-)code of a Gabidulin code with generator matrix Ĝ and known error

correction algorithm DbG . Thus, an matrix Ŝ ∈ F
k×N−(n−k)
qm , which is the

remaining part for an alternative secret key (DbG , Ŝ, T̂) may be easily recov-

ered. Note that the presented attack may be performed in O(n3) operations
over Fqm and works for GGPT, all simple variants and for any subfield sub-
code version of GPT using the error correction algorithm of the original
Gabidulin code. Thus, this modified version from the attack from [38] is
more powerful than the original one.
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Some timings for the attack may be found in the table 3.10. Again,
we viewed random instances with uniformly distributed G,S,T and X. The
differences to the values in [38] are due to the faster computer used.

Parameters average runtime WF best of
m k t s algorithm 3.5.1 Gibson’s attacks

48 10 16 3 17 minutes 2139

48 16 18 4 20 minutes 2200

64 8 40 1 7 minutes 2111

Table 3.10: Attacking the GGPT cryptosystem

3.5.5 A Structural Attack for “RRC-GPT”

In [39] the author presented a security reduction for GPT with reducible
rank codes. The main idea is, to view only parts of the public generator
matrix, which define public generator matrices of the CS-GPT cryptosystem.
We will limit ourselves to the case, where the secret RRC is build from two
Gabidulin codes. Proofs are analogous for all other cases.

Let
(
Gpub, r

)
be the public key of an instance of the RRC-GPT cryptosys-

tem as given in equation (16) with parameters q,m and ni, ki, ti, i = 1, 2.
To attack RRC-GPT we first rewrite the public generator matrix:

Lemma 3.25 Let (G,S,T) be the secret key corresponding to the RRC-
GPT public key

(
Gpub, r

)
. Then there exists an invertible matrix T̂ ∈

F
(n1+n2)×(n1+n2)
q such that

G
pub

T̂
−1 = S

[
Z1 G1 0

Z2 Y G2

]
, (21)

where the matrices Gi are generator matrices of [ni − ti, ki] Gabidulin codes

and Zi ∈ F
ki×(t1+t2)
qm as well as Y ∈ F

k2×(n1−t1)
qm are arbitrary matrices.

Further, if the matrix SJK2
is invertible for a subset J ⊆ {1, · · · , k1 + k2}

and K2 := {k1 + 1, · · · , k1 + k2}, then G
pub
J• is an instance of the CS-GPT

cryptosystem.

Proof. As the matrices X1 and X2 used on key generation are of column
rank smaller than ti over Fq, we may assume without loss of generality, that
only their first ti columns contain non-zero entries. Thus, by exchanging the
(t1 + i)-th column of GpubT−1 with the (n1 + i)-th column for i = 1, · · · , t2
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and modifying T accordingly, we get a matrix T̂ with the desired properties.
The fact that G

pub
J• forms a instance of the CS-GPT follows from the obser-

vations above.

The representation of the private key as in equation (21) suggests an
attack on RRC-GPT as sketched in algorithm 3.5.2, which is a modification
of the attack presented by the author in [37]. We prove the correctness of

Algorithm 3.5.2 Structural Attack for RRC-GPT

Input: A RRC-GPT public key (Gpub, r).
Output: The row and column scrambler of a secret key for (Gpub, r).

Ĝpub = Gpub, N = n and K = k.
for i = w down to 1 do

Recover a (partial) column scrambler Ti ∈ FN×N
q from the matrix

λf (Ĝpub), where f = nw − kw − tw − 1 ≤ 2r − 1 as in algorithm 3.5.1.

Verify that the Ni rightmost columns of ĜpubT
−1
i define an [Ni,Ki]

Gabidulin (sub-)code, where Ni is maximal.

Compute a (partial) row scrambler Si ∈ FK×K
qm , such that

(SiĜ
pubT

−1
i ){1,··· ,K−Ki}{N−Ni+1,··· ,n} = 0.

Set Ti =

[
Ti 0

0 Idn−N

]
and Si =

[
Si 0

0 Idk−K

]
.

Set N = N −Ni, K = K −Ki and Ĝpub = (SiG
pubT

−1
i ){1,··· ,K}{1,··· ,N} .

return S = Sw · · ·S1 and T = T1 · · ·Tw.

the algorithm in the case where w = 2:

Theorem 3.26 Algorithm 3.5.2 returns a pair of row- and column scram-
bler belonging to a valid secret key for (Gpub, r).

Proof. For the correctness of the first step of the loop: If h2 is the check
vector of G2, then

(
0 0 h2

)
will be in λf (GpubT̂−1)⊥, where T̂ is as in

equation (21). Let h ∈ Fn
qam be a vector of maximal rank N2 ≥ n2−t2 in the

dual of λf (Gpub)⊥. Note, that we do not restrict h to Fn
qm, as to assure, that

its norm will not be limited by m. Further, as the norm of h is maximal, the
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n2 − t2 last positions of hT̂⊤ are non-zero. Let T2 ∈ Fn×n
qm be an invertible

matrix s.t. the first n − N2 positions of hT⊤
2 are zero. As in the previous

section, GpubT
−1
2 ⊆ λf (h[1/q1/f ]T⊤

2 ), thus we can already correct errors of
rank up to r in the last N2 positions of GpubT

−1
2 . Thus, the verification in

the second step of the loop never fails.
It remains to show that step three to five of the loop generate a pub-

lic key of the GGPT cryptosystem, with minimum distance ≥ (2r + 1):
Let K2 be the rank of the submatrix of GpubT

−1
2 , which consists of the

last N2 columns. If K2 = k, we are done. Otherwise k > K2 ≥ k2. In
this case, it is easy to compute an row scrambler S2 ∈ Fk×k

qm , such that

(S2G
pubT

−1
2 ){1,··· ,k−K2}{n−N2+1,··· ,n} = 0. Thus, the first k − K2 rows of

S2G
pub have no influence from G2. These rows form a subcode of some pub-

lic code of the GGPT cryptosystem which can correct errors of rank up to r
and thus has minimum distance ≥ (2r + 1). This property does not change,
if we remove the last N2 columns, as they are zero.

It follows, that we can recover a alternative secret key in O(n3) oper-
ations over Fqam with a < n ≤ 2m. Thus, unlike stated by the author in
[37], there are no instances of RRC-GPT, which are secure against struc-
tural attacks. Again, we omit giving timings for more than the initially
proposed parameter set from [17], whose random instances can be broken
by algorithm 3.5.2 in about 10 minutes.
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4 Conclusions and Perspectives

For the McEliece PKC, to our knowledge, the best attack is the one proposed
by Canteaut and Chabaud [7]. Despite the improvement achieved in this
thesis, the current versions of the statistical decoding algorithm have no
advantage over this attack for any reasonable parameter set. Consequently,
parameter sets for the McEliece cryptosystem remain unchanged by the
results of this thesis.

However, the presented methods to improve statistical decoding can cer-
tainly be transfered to iterative decoding. Further, one might try to weight
the information obtained by the different sets of check vectors in an other
way. It would be interesting to check whether one can get a significant im-
provement by choosing a different transformation of the random variables
than to N (0, 1).

The larger part of this thesis was dedicated to attacks on GPT-like PKCs.
We gathered up proposed techniques to prevent such attacks and have shown
that none of the existing GPT variants is secure. Neither the addition of
random redundancy, distortion matrices or supplementary check vectors, nor
the employment of reducible codes is sufficient to allow the use of Gabidulin
codes in cryptography. Additionally, we proved that (unlike in the proposal
from Niederreiter) the use of subfield subcodes does not lead to a secure GPT
variant. Because of their highly structured generator matrix, Gabidulin
codes can not be used for cryptographic applications.

Again, a class of codes which can easily be distinguished from a random
code has been proven unsuitable for cryptographic applications. This cor-
roborates the evidence, that the existence of a distinguisher indicates the
insecurity of a cryptosystem, which is e.g. the case for quasi-cyclic codes
[19].

Promising to our opinion could be research on the connection of Goppa
and Gabidulin codes via (generalized) Srivastava codes [32]. Both classes
have an intersection with the class of Srivastava codes and thus the latter
might be used either to lead way to an attack on McEliece’s cryptosystem
or to a codebased cryptosystem with smaller key sizes.

Nevertheless, Gabidulin codes are interesting and offer a variety of dif-
ferent applications. In this thesis we developed a cubic time error correction
algorithm which corrects rank errors up to the amount of redundancy in an
interleaved Gabidulin code with overwhelming probability.

As mentioned in section 3.3, we can view an erroneous codeword of an
interleaved Gabidulin code as the public key of the GGPT cryptosystem.
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The fact that we are able to recover partial information about the used
secret key might open the way to correct errors in received codewords of an
interleaved Gabidulin code without the knowledge of the underlying code.
The property of codewords to allow error correction without knowledge of
the underlying code is new and might be interesting. To our knowledge,
there exists no other code offering this property.
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