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Abstract In this paper, we formally prove that padding the plaintext with a random
bit-string provides the semantic security against chosen plaintext attack (IND-CPA) for the
McEliece (and its dual, the Niederreiter) cryptosystems under the standard assumptions.
Such padding has recently been used by Suzuki, Kobara and Imai in the context of RFID
security. Our proof relies on the technical result by Katz and Shin from Eurocrypt ’05 show-
ing “pseudorandomness” implied by the learning parity with noise (LPN) problem. We do
not need the random oracles as opposed to the known generic constructions which, on the
other hand, provide a stronger protection as compared to our scheme—against (adaptive)
chosen ciphertext attack, i.e., IND-CCA(2). In order to show that the padded version of the
cryptosystem remains practical, we provide some estimates for suitable key sizes together
with corresponding workload required for successful attack.

Keywords Semantic security · Cryptographic standard model ·McEliece cryptosystem ·
Niederreiter cryptosystem

AMS Classification 11T71

Ryo Nojima’s work was done when he was at the University of Tokyo, Japan.

R. Nojima
Information Security Research Center, National Institute of Information and Communications Technology
(NICT), Tokyo, Japan
e-mail: ryo-no@nict.go.jp

H. Imai
Department of Electrical, Electronic and Communication Engineering, Chuo University, Tokyo, Japan
e-mail: h-imai@aist.go.jp

H. Imai · K. Kobara · K. Morozov (B)
Research Center for Information Security (RCIS), National Institute of Advanced Industrial Science and
Technology (AIST), Tokyo, Japan
e-mail: kirill.morozov@aist.go.jp

K. Kobara
e-mail: k-kobara@aist.go.jp

123



290 R. Nojima et al.

1 Introduction

The semantic security (also called indistinguishability) defined by Goldwasser and Micali
[15] is the security notion for a public-key cryptosystem (PKC). Its intuitive meaning is that a
ciphertext does not leak any useful information about the plaintext but its length. For example,
even if an attacker knows that the plaintext is either “0” or “1”, the ciphertext does not help
him almost at all. Since this notion appeared, a number of semantically secure public-key
encryption schemes have been proposed [1,8,9,25].

At the same time, the problem of enhancing the existing (not semantically secure) crypto-
systems with such useful property also arose. Two examples of such schemes are the McEliece
[23] and the Niederreiter [24] cryptosystems whose security is ensured under the following
two assumptions: (a) hardness of the bounded distance decoding of random binary linear
codes1 or, equivalently, the learning parity with noise (LPN) and (b) indistinguishability of
the scrambled generating and parity-check matrices of a Goppa code from random ones.2

From the security point of view, these cryptosystems has one-wayness property. Informally,
this means that given a randomly chosen ciphertext, it is hard to completely recover the
corresponding plaintext.

Motivation. The main motivation to continue research on the McEliece-style cryptosys-
tems is the following: (a) As it was pointed out in the original paper [23], the hardware
implementation of the McEliece PKC would be very fast as it only requires matrix operations
for encryption/decryption (as long as one can afford storing keys of hundreds of kilobytes
in size); (b) Not only public-key encryption but also other primitives (e.g., signatures [7],
identity-based identification and signature schemes [6]) can be built based on the McEliece-
style assumptions; c) this PKC is secure against quantum adversaries that makes it a good
candidate for the post-quantum world.

Our contribution. Our main observation is that if some fixed part of the plaintext is made
random then due to the construction of the cryptosystem it makes the ciphertext pseudoran-
dom from the attacker’s point of view. As easy as it looks, this fact, to the best of the authors’
knowledge, has not been proved or even stated explicitly in the related literature. The paper
fills this gap by providing the formal proof of this fact. Additionally, we estimate the time-
complexity of breaking this version of the McEliece PKC (which we call the randomized
McEliece cryptosystem) and show that it remains practical.

A bit more formally, let E pk(·) be an encryption algorithm of the McEliece (or the Nieder-
reiter) cryptosystem with message space {0, 1}k , where m ∈ {0, 1}k2 an actual message, and
r ∈ {0, 1}k1 a random sequence, where k = k1 + k2. Then, the ciphertext corresponding to
m becomes E pk([r |m]), where [A|B] denotes a concatenation of two vectors (or, in general,
matrices) A and B.

We show that this padding yields the encryption secure against chosen plaintext attack
(IND-CPA), if the McEliece (or the Niederreiter) cryptosystem is used, under the standard
assumptions.

Some details. We note that the aforementioned scheme perhaps appear implicitly or explic-
itly in many previous works. Our paper was inspired by the work of Suzuki, Kobara and Imai
[31] where such padding was suggested (without a formal proof) for increasing the security
of encryption.

1 So far, there exists no polynomial algorithm for this problem. Some evidence for its hardness is provided
by the fact that the general decoding problem is NP-complete [3].
2 This has been believed to be true for a long time and was also utilized for cryptographic applications,
e.g., [6,7].
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The technical tool which we use to prove the security of our scheme is the lemma by Katz
and Shin [16] which established a pseudorandomness of the queries to the oracle in the LPN
problem. The key difference from their setting is that we have a scrambled generating (or
parity-check) matrix of the Goppa code (which is assumed to be pseudorandom) instead of
the oracle which is equivalent to a random matrix). The main technical result of our work,
Lemma 4, states that in the LPN problem, substituting the random matrix by a pseudoran-
dom one preserves pseudorandomness of the output. Then, under the above assumptions, the
proof of Proposition 1 stating semantic security of the McEliece cryptosystem with random-
ized plaintext follows as well as the similar result for the Niederreiter cryptosystem.

Related works. Regarding the conversions from one-way cryptosystems to semantically
secure ones, one must first mention the straightforward application of the Goldreich-Levin
(hardcore) predicate theorem [14] or Yao’s XOR lemma which would immediately imply the
needed result. The obvious problem is that such conversion is quite inefficient.

The list of more elaborated conversions includes (but is not limited to) [2,12,18,27]. The
optimal asymmetric encryption padding (OAEP) by Bellare and Rogaway [2] is the first
result of such kind but it dealt with one-way trapdoor permutations (while the cryptosystems
we consider are only the trapdoor functions) and needed some fixing in the general case [29].

Fujisaki and Okamoto [12] and Pointcheval [27] independently suggested a conversion
from any one-way PKC to a PKC semantically secure against chosen ciphertext attack (IND-
CCA). Finally, Kobara and Imai [18] presented a more efficient conversion than the above
two, tailored specifically for the McEliece cryptosystem and arming the latter with semantic
security against adaptive chosen ciphertext attack (IND-CCA2). We emphasize that all the
proofs of security for all the above mentioned conversions were in the random oracle model,
while our result does not need this assumption.

Organization of the rest of the paper. In Sect. 2, we provide some basic notation and defini-
tions, and describe the original versions of the PKC’s in question. In Sect. 3, their randomized
versions are introduced along with related security definitions and the main result is stated,
while its proof is presented in Sect. 4. In Sect. 5, the security parameters for the randomized
McEliece cryptosystem are estimated. In Sect. 6, we conclude our work and discuss open
questions.

2 Preliminaries

In this paper, we consider a w-error correcting (n, k)-linear binary code and, throughout this
paper, we regard k, n, and w as security parameters. Specifically, the code we concentrate on is
the irreducible binary Goppa code and the relationships between these parameters are n = 2m′

and k ≥ n−m′w for every positive integer m′. We denote the probabilistic polynomial-time

as ppt and we often call the algorithm efficient if its running time is polynomial. Let s
$← S

denote the operation of selecting s uniformly at random from the set S. If D is a probability
distribution over S then s ← D denotes the operation of selecting s at random according to D.
Let Un denote the uniform distribution over {0, 1}n . Let Ur,c be the uniform distribution over
r×c random binary matrices and let En,w be the uniform distribution over {0, 1}n of Hamming
weight w. Let D be a probability distribution over S, and let O be an algorithm which, on input
an empty string, outputs an element s ∈ S according to the distribution D. Then, AO is the or-
acle O embedded probabilistic polynomial-time algorithm which can obtain the element of S
according to the distribution D through O . That is, when A queries to O with an empty string,
O chooses an element according to D and returns it back. We usually denote this AD for short.
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A public-key encryption scheme is composed of a triplet of algorithms �=(Gen�, Enc�,
Dec�). The key generation algorithm Gen� is a ppt algorithm which on input 1k (k ∈ N)
outputs a pair of public and secret keys, (pk, sk), in polynomial time. We assume that the
public key pk defines a message space denoted by M . The encryption algorithm Enc� is a
ppt algorithm which, on input pk and plaintext m ∈ M , outputs a ciphertext c ∈ {0, 1}∗. The
decryption algorithm Dec� is a polynomial-time algorithm which takes sk and c as input
and outputs a message m. We require that for any key pair (pk, sk) obtained from Gen�,
and any plaintext m ∈ M , Dec�(sk, Enc�(pk, m)) = m.

The semantic security against chosen-plaintext attack (IND-CPA) is one of the most natural
practical requirements for a public-key cryptosystem. Its intuitive meaning is that a ciphertext
does not leak any useful information about the plaintext but its length.

Let � = (Gen�, Enc�, Dec�) be a public-key encryption scheme and let D = (D1, D2)

be a ppt algorithm. For every k ∈ N, we define

Advsem
D,�(k) = Pr

⎡
⎢⎢⎣

(pk, sk)← Gen�(1k),

(m0, m1)← D1(pk), D2(y) = b

b
$←{0, 1},

y ← Enc�(pk, mb)

⎤
⎥⎥⎦−

1

2
.

Also we define the advantage function of the scheme as follows. For any t ,

Advsem
� (k, t) = max

D

{
Advsem

D,�(k)
}
,

where the maximum is over all D with time-complexity t . We say that � is semantically
secure if the function Advsem

� (k, t) is negligible for every polynomial bounded t and every
sufficiently large k.

Let us now describe the original cryptosystems to be considered in this work.

2.1 McEliece public-key cryptosystem

The McEliece cryptosystem [23] consists of a triplet of ppt algorithms ME=(GenME,
EncME, DecME) and M = {0, 1}k .

– Key generation algorithm GenME works as follows:
1. Generate a k × n generator matrix G′ of an irreducible binary Goppa code, where

we assume that there is an efficient error-correction algorithm Correct which can
always correct up to w errors.

2. Generate a k × k random non-singular matrix S.
3. Generate a n × n random permutation matrix P.
4. Set G = SG′P, and output pk = (G, w) and sk = (S, G′, P).

– Encryption algorithm EncME takes a plaintext m ∈ {0, 1}k and the public key pk as input
and outputs ciphertext c = mG⊕ e, where e← En,w.

– Decryption algorithm DecME, given ciphertext c and secret key sk as input, works as
follows:

1. Compute cP−1 = (mS)G′ ⊕ eP−1, where P−1 denotes the inverse matrix of P.
2. Compute mS = Correct(cP−1).
3. Output m = (mS)S−1.

123



Semantic security for the McEliece cryptosystem without random oracles 293

2.2 The Niederreiter public-key cryptosystem

Niederreiter [24] proposed a dual version of the McEliece cryptosystem where the public
key is a scrambled parity-check matrix H, a plaintext is m ∈ {0, 1}n of weight w, and the
corresponding ciphertext c is of the form c = mH.

The Niederreiter cryptosystem consists of a triplet of ppt algorithms NR = (GenNR,
EncNR, DecNR) and M ⊂ {0, 1}n is a set of all strings of weight w.

– Key generation algorithm GenNR works as follows:
1. Generate a (n− k)× n parity check matrix H′′ of an irreducible binary Goppa code,

where we assume that there is an efficient error correcting algorithm Correct which
can correct up to w errors.

2. Generate (n − k)× (n − k) random non-singular matrix S.
3. Generate n × n random permutation matrix P.
4. Let H′ = SH′′P, let H = H′T and output pk = (H, w) and sk = (S, H′′, P).

– Encryption algorithm EncNR takes a plaintext m ∈ {0, 1}n of weight w and pk as input
and outputs ciphertext c = mH.

– Decryption algorithm DecNR, given ciphertext c and secret key sk, works as follows:
1. Compute S−1cT = H′′(PmT ), where S−1 denotes the inverse matrix of S
2. Compute PmT = Correct(S−1cT ).
3. Output mT = P−1(PmT ).

3 Randomized versions and main result

3.1 Randomized McEliece cryptosystem

It is easy to see that the original McEliece cryptosystem [23] is not IND-CPA. Suppose that
the adversary obtains a ciphertext c, and he knows that c is a ciphertext of either m0 or m1,
then he can verify which one is a corresponding plaintext by simply computing the weight
of m0G ⊕ c and check it to be w or not. An intuitive way to avoid such the situation is
concatenating a random sequence r to a message m and encrypting [r |m]. Such padding has
been often employed in the previous schemes, but so far there has been no formal proof for
semantic security which it provides.

Let k1, k2 ∈ N be two integers such that k = k1 + k2 and k1 = bk, where b < 1 is a
positive rational number, e.g., b = 9

10 . Here, we denote by k1 the length of the random string
r and by k2 the length of the message m. The encryption algorithm EncRME just encrypts
[r |m] instead of m itself. The decryption algorithm DecRME is almost the same as DecME.
The difference is that it outputs only the last k2 bits of the decrypted string.

3.2 Randomized Niederreiter cryptosystem

Similar situation occurs in the Niederreiter cryptosystem as well. In [31], the authors proposed
the RFID authentication scheme based on the Niederreiter cryptosystem. Their idea was
essentially to use the random padding for enhancing security of the Niederreiter cryptosystem.
However, no claim of semantic security for this scheme have been made.

Let n1, and n2 be some integers with n = n1+ n2 and n1 = bn for some positive rational
number b, e.g., b = 9

10 . Here we assume that r ∈ {0, 1}n1 is the random string of weight
w1 = � n1w

n1+n2
	 and m ∈ {0, 1}n2 is the message of weight w2 = 
 n2w

n1+n2
�. The encryption

algorithm EncRNR encrypts [r |m]where r is randomly chosen. Also the decryption algorithm
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DecRNR is the same as DecNR except that it outputs only the last n2 bits of the decrypted
plaintext.

3.3 Security of the original cryptosystems

In order to prove the security of these schemes, we use the same assumptions as for the
original PKC.

Generally, we can categorize the attacks to the McEliece and the Niederreiter cryptosys-
tems into the following two cases:

Structural Attack: Recover the original structure of the secret key from the scrambled gen-
erator matrix G or the scrambled parity check matrix H.

Direct Decoding: Decode the plaintext m directly from mG⊕ e or mH.

If we employ the irreducible binary Goppa codes then there is no efficient algorithm which
can extract the secret key from the public key in the McEliece or the Niederreiter cryptosys-
tems as long as the weak keys [21] are avoided. Moreover, there is no algorithm which can
efficiently distinguish the matrices defined by the public keys of the those cryptosystems and
the same size random matrices. The time complexity of the currently best algorithm [7] is still
sub-exponential. Intuitively this algorithm works as follows: enumerate Goppa polynomials
and verify whether each corresponding code and the generator matrix G (or the generator
matrix converted from parity check matrix H) are “permutation equivalent” or not by using
the support splitting algorithm [28], which results in a nw(1+o(1))-time algorithm. Actually,
in the worst-case, the problem of deciding permutation equivalence can reduce to the graph
isomorphism problem [26] which is conjectured to be in NP \ P . To prove security of the
randomized cryptosystems, we assume that the matrices G and H are indistinguishable from
the same size random matrices, respectively, for any ppt algorithm. The formal statements
are given in Subsects. 3.4 and 3.5.

For the excellent surveys on security of both PKC’s, we refer the reader to [10,17].

3.4 Security of the randomized McEliece cryptosystem

Definition 1 (Indistinguishability of G) Let D be a probabilistic algorithm. For every k ∈
N, we define

Advind
D,G(k) = Pr

[
((G, w), sk)← GenME(1k) | D(G, w) = 1

]

−Pr
[
R← Uk,n | D(R, w) = 1

]
.

Also we define the advantage function of the problem as follows. For any t ,

Advind
G (k, t) = max

D

{
Advind

D,G(k)
}
, (1)

where the maximum is over all D with time-complexity t . We say G is indistinguishable if,
for every polynomial bounded t and every sufficiently large k, Advind

G (k, t) is negligible.

In this paper, we assume that G is indistinguishable. This assumption was also utilized in
[6,7].

To prove the security, we also need to assume the learning parity with noise (LPN) problem
is hard.

Definition 2 (LPN problem) Let r, a be binary vectors of length k and let z = 〈r, a〉,
where 〈r, a〉 is the dot product of r and a modulo 2. Also we consider Bernoulli distribution
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Bθ with parameter θ ∈ (0, 1
2 ), and let Qr,θ be the distribution defined by

{
a

$←{0, 1}k, ν ← Bθ | (a, 〈r, a〉 ⊕ ν)

}
.

Let A be a probabilistic algorithm. For every k ∈ N, we define

Adv
oneway
A,LPNθ

(k) = Pr

[
r

$←{0, 1}k | AQr,θ = r

]
.

We define the advantage function of the problem as follows. For any t and q ,

Adv
oneway
LPNθ

(k, t, q) = max
A

{
Adv

oneway
A,LPNθ

(k)
}

,

where the maximum is over all A with time-complexity t and query-complexity q . We say
that the LPNθ problem is hard if Advoneway

LPNθ
(k, t, q) is negligible for every sufficiently large

k and polynomially bounded t , and q .

We assume that the LPNθ problem is hard for some θ satisfying w = 
θ(n+ 1)�. In fact,
all known algorithms for solving this problem are still sub-exponential time [4]. Especially,
for fixed q and small amount of noise, the best ones are the information set decoding attacks
due to Leon [19], Stern [30], Canteaut and Chabaud [5], and its time complexity is roughly

(
n
k

)
·
(

n − w

k

)−1

, (2)

where w is the weight of the noise.
With the above two assumptions, we can prove the first part of our main result:

Proposition 1 The randomized McEliece cryptosystem is IND-CPA secure if the LPNθ prob-
lem is hard and G is indistinguishable.

The proof is given in Sect. 4.2

3.5 Security of the randomized Niederreiter cryptosystem

Definition 3 (Indistinguishability of H) Let D be a probabilistic algorithm. For every
k ∈ N, we define

Advind
D,H(k) = Pr

[
((H, w), sk)← GenNR(1k) | D(H, w) = 1

]

−Pr
[
R← Un,n−k | D(R, w) = 1

]
.

Also we define the advantage function of the problem as follows. For any t ,

Advind
H (k, t) = max

D

{
Advind

D,H(k)
}
, (3)

where the maximum is over all D with time-complexity t . We say H is indistinguishable if
Advind

H (k, t) is negligible for every polynomially bounded t and every sufficiently large k.

In this paper, we assume that H is indistinguishable.
We can prove that the randomized Niederreiter cryptosystem has semantic security if the

following problem is hard for every ppt algorithm. The problem is similar to the LPN prob-
lem but, to the best of the authors’ knowledge, there exists no proof that these two problems
are equivalent in terms of the average case time-complexity.
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Definition 4 (Syndrome Decoding Problem) Let D be a probabilistic algorithm. For every
k ∈ N, we define

Adv
oneway
D,SDw

(k) = Pr
[
H← Un,n−k, r ← En,w | D((H, w), rH) = r

]
.

Also we define the advantage function of the problem as follows. For any t ,

Adv
oneway
SDw

(k, t) = max
D

{
Adv

oneway
D,SDw

(k)
}

,

where the maximum is over all D with time-complexity t . We say that the syndrome decoding
problem SDw is hard if Advoneway

SDw
(k, t) is negligible for every polynomially bounded t and

every sufficiently large k.

Assume that the SDw problem is hard. Together with the previous assumption, it allows us
to prove the second part of our main result:

Proposition 2 The randomized Niederreiter cryptosystem is IND-CPA secure if the SDw

problem is hard and H is indistinguishable.

The proof is given in Sect. 4.3

4 Security analysis

4.1 Intermediate lemma

Before describing the proofs of randomized versions being semantically secure, we charac-
terize these cryptosystems.

We denote a set of random numbers utilized inside Enc� by R, and we explicitly denote
the randomness used inside the algorithm by Enc�(pk, m; r), where r ∈ R .

Definition 5 The public key encryption scheme � = (Gen�, Enc�, Dec�) with a mes-
sage space M and a random space R is called admissible if there is a pair of deterministic
polynomial-time algorithms Enc1

� and Enc2
� satisfying the following property:

– Partible: Enc1
� takes as input a key pk and r ∈ R, and outputs a p(k) bit-string. Enc2

�

takes as input a key pk, and m ∈ M and outputs a p(k) bit-string. Here p is some
polynomial in k. Then for any pk given by Gen�, r ∈ R, and m ∈ M , Enc1

�(pk, r)⊕
Enc2

�(pk, m) = Enc�(pk, m; r).
– Pseudorandomness: Let D be a probabilistic algorithm and let

Advind
D,Enc1

�

(k) = Pr

[
r

$← R, (pk, sk)← Gen�(1k) | D(pk, Enc1
�(pk, r)) = 1

]

−Pr
[
s←Up(k), (pk, sk)← Gen�(1k) | D(pk, s) = 1

]
.

We define the advantage function of the problem as follows. For any t ,

Advind
Enc1

�

(k, t) = max
D

{
Advind

D,Enc1
�

(k)
}

, (4)

where the maximum is over all D with time-complexity t . Then, the function Advind
Enc1

�

(k, t) is negligible for every polynomially bounded t and every sufficiently large k.
In the following lemma, we prove that if � is an admissible cryptosystem, then it is an

IND-CPA encryption scheme.
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Lemma 1 If there exists an algorithm D which runs in time t, and such that

Advsem
D,�(k) ≥ δ,

then

Advind
Enc1

�

(k, t + t ′) ≥ δ,

where t ′ is the worst-case time-complexity of computing Enc2
�.

Proof We construct a distinguisher D′ from the IND-CPA adversary D. We show that if
D breaks the semantic security with non-negligible probability then D′ distinguishes s1 =
Enc1

�(pk, r) and the same length random value s0 with non-negligible probability.
We construct an algorithm D′ as follows:

D′(pk, s̃)
Run D1(pk) to obtain (m0, m1)

b← U1

Define c = s̃ ⊕ Enc2
�(pk, mb)

Run D2(c) to obtain b′
Output 1 if b′ = b, and 0 otherwise

Let Rand be the event that s̃(= s0) was chosen from the uniform distribution, and let
Real be the event that s̃(= s1) is Enc1

�(pk, r) for some random string r . We will say that
D succeeds if b′ = b (and denote this event by Succ) under the event Real occurs, and we
denote this probability by PrD

[
Succ

]
.

Note that, from (4), we know

Pr
[
D′ = 1 | Real

]− Pr
[
D′ = 1 | Rand

] ≤ Advind
Enc1

�

(k, t + t ′), (5)

where t ′ is the worst-case time-complexity of computing Enc2
�.

We claim that Pr
[
D′ = 1 | Real

] = PrD[Succ]. To see this, note that when Real occurs
we have s̃ = s1 = Enc1

�(pk, r). But then s1 is distributed exactly as they would be in a real
execution. Since D′ outputs 1 iff D succeeds, the claim follows.

To complete the proof, we show Pr
[
D′ = 1 | Rand

] = 1
2 . Here we know that s̃ is dis-

tributed according to the uniform distribution Up(k). Therefore, s̃ ⊕ Enc2
�(pk, mb) given to

D is uniformly distributed as well. This means that D obtains no information related to b.
Since D′ outputs 1 iff D succeeds, we can conclude that Pr

[
D′ = 1 | Rand

] = 1
2 .

By combining these results, now we can estimate (5) as follows:

Pr
[
D′ = 1 | Real

]− Pr
[
D′ = 1 | Rand

] = Pr
D
[Succ] − 1/2

= Advsem
D,�(k)

≥ δ.

Since Advind
Enc1

�

(k, t + t ′) ≥ Pr
[
D′ = 1 | Real

]− Pr
[
D′ = 1 | Rand

]
,

Advind
Enc1

�

(k, t + t ′) ≥ δ.

This concludes the proof. ��

Above lemma implies that, to prove Propositions 1 and 2, it is sufficient to prove that the
randomized McEliece and the randomized Niederreiter cryptosystems are admissible.
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4.2 Proof of proposition 1

Let us recall the form of the randomized McEliece cryptosystem: c = [r |m]G⊕ e.
Let G1 and G2 be k1 × n and k2 × n sub-matrices of G, respectively, such that GT =

[GT
1 |GT

2 ]. Then we can re-write the above equation as follows:

c = [r |m]G⊕ e = {rG1 ⊕ e} ⊕ mG2. (6)

Let us define the algorithm Enc1
RME(pk, [r |r ′])) as rG1⊕ e, where r ′ is the random num-

ber utilized for generating the weight w random vector e ∈ {0, 1}n , and define the algorithm
Enc2

RME(pk, m) as mG2. Then, clearly, the randomized McEliece cryptosystem is partible.
Hence, in order to prove the IND-CPA security of the randomized McEliece cryptosystem,
it is sufficient to prove that Enc1

RME satisfies the pseudorandomness property.
The following lemma, which states that the hardness of the LPN problem implies pseu-

dorandomness of the output, plays an important role to prove the pseudorandomness of
Enc1

RME(pk, r). Note that we set the length of a and r as k1. So each response from the
oracle Qr,θ becomes (a, 〈r, a〉 ⊕ ν) of length k1 + 1.

Lemma 2 (Lemma 1 in [16]) If there exists an algorithm D which runs in time t, makes
queries q times and such that

Pr
[
r ← Uk1 | DQr,θ = 1

]− Pr
[

DUk1+1 = 1
]
≥ δ, then

4 · Advoneway
LPNθ

(k1, t ′, q ′) ≥ δ, where t ′ = O(tk1δ
−2 log k1), q ′ = O(qδ−2 log k1).

This is the key technical lemma which was rigorously proved in [16]. We re-write the
above lemma as follows:

Corollary 1 Let O0 = Uk1+1 and O1 = Qr,θ . If there exists an algorithm D which runs in
time t, makes queries q times and such that

Pr
[
r ← Uk1 , b← U1 | DOb = b

]− 1

2
≥ δ

then

2 · Advoneway
LPNθ

(k1, t ′, q ′) ≥ δ,

where t ′ = O(tk1δ
−2 log k1), q ′ = O(qδ−2 log k1).

To prove the semantic security of the randomized McEliece cryptosystem, we slightly
change the statement of the LPN problem. More precisely, we represent the sequence of
responses from the oracle by the linear algebraic notation and re-define the LPN problem
with this. Let (ai , 〈ai , r〉 ⊕ νi ) be a response from the oracle at time i for 1 ≤ i ≤ n, let
us regard each ai as a column vector and set R1 = [a1|a2| . . . |an]. Then, once fixing the
number of the queries to n which is polynomially bounded, the hardness of the LPN problem
is equivalent to saying that, given rR1⊕ ν, and R1, it is hard for any ppt algorithm to output
r , where νT = [ν1|ν2| . . . |νn]. With this notation, the previous lemma is equivalent to saying
that

rR1 ⊕ ν

is pseudorandom. Remind that our target here was to prove

rG1 ⊕ e
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being pseudorandom, where e is an error vector of weight w. So what we want to show here
is that replacing R1 and ν with G1 and e, respectively, preserves the pseudorandomness.

To do so, we first replace ν with e and prove that

rR1 ⊕ e

is pseudorandom, where e← En,w with w = 
θ(n + 1)�.
Lemma 3 Let R1 and R2 be a k1 × n sub-matrix and a k2 × n sub-matrix of a matrix R,
respectively, such that RT = [RT

1 |RT
2 ]. Also let q = n.

Then if there exists an algorithm D which runs in time t and such that

Pr

[
r ← Uk1 , R← Uk,n, e← En,w,

b← U1, s0 ← Un, s1 ← rR1 ⊕ e

∣∣∣∣ D(R, w, sb) = b

]
− 1

2
≥ δ

then

2(n + 1) · Advoneway
LPNθ

(k1, t ′, q ′) ≥ δ, (7)

where q ′ = O(nδ′−2 log k1), t ′ = O((t + n2)k1δ
′−2 log k1) and δ′ = δ

n+1 .

Proof Sketch Let us denote the distinguisher described in Corollary 1 by D′. Then we can
construct the distinguisher which tells O1 from O0 using D as follows:

– D′ accesses to the oracle n times. Let (ai , bi ) be a response from the oracle at time i . If
the oracle is O1 then we denote each error vector by νi and so bi = 〈r, ai 〉 ⊕ νi .

– D′ sets R1 = [a1|a2| . . . |an], where we regard each ai as a column vector and thus R1

is a k1 × n random matrix.
– D′ randomly generates R2 ← Uk2,n .
– D′ feeds D with RT = [RT

1 |RT
2 ], w, and [b1|b2| . . . |bn].

– D′ outputs what D outputs.

Consider the case where the oracle is O1. In this case, each error νi added by oracle O1

is generated according to Bernoulli distribution, but D′ must feed D with rG1 ⊕ e, where
e = [ν1|ν2| . . . |νn] is a string of weight w. So we must estimate the probability of the weight
of e being w. However, this probability is at least 1

n+1 since the weight of w being 
θ(n+1)�
is the most likely to occur in Bernoulli distribution among n + 1 possible cases of weights.
This introduces (n + 1) in the left part of (7), still leaving the advantage negligible. ��

We showed that rR1 ⊕ e is pseudorandom. Therefore, the rest of the proof is to replace
the random matrix R with the (pseudorandom) public key matrix G and to show that rG1⊕e
is pseudorandom. Here note that this means that the randomized McEliece cryptosystem is
in fact an admissible cryptosystem.

Lemma 4 If there exists an algorithm D which runs in time t and such that

Pr
[
r ← Uk1 , (G, w)← GenME(1k), e← En,w | D((G, w), rG1 ⊕ e) = 1

]

−Pr
[
s0 ← Un, (G, w)← GenME(1k) | D((G, w), s0) = 1

]
≥ δ,

then

4(n + 1) · Advoneway
LPNθ

(k1, t1, q1)+ 2 · Advind
G (k, t2) ≥ δ.

q1 = O(nδ′−2 log k1), t1 = O((t + n2)k1δ
′−2 log k1), t2 = O(t + n2) and δ′ = δ

n+1 .
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Proof We will say that the algorithm D succeeds iff it outputs 1 when given input was of
the form rG1 ⊕ e. We denote this event by Succ. We construct an adversary D′ which
distinguishes the random matrix R from the matrix G as follows.

D′(M, w)

Divide M into M1 and M2 such that MT = [MT
1 |MT

2 ], M1 is k1 × n sub-matrix and M2 is
k2 × n sub-matrix.
b← U1

If b = 1
e← En,w, r ← Uk1 , run D((M, w), rM1 ⊕ e) to obtain b′

Else
s0 ← Un , run D((M, w), s0) to obtain b′

Endif
If b = b′ then output 1, and otherwise 0

Let Rand be the event that the matrix M was chosen randomly from uniform distribution
Uk,n , and let Real be the event that the matrix was generated by GenME. Then from (1) we
can describe the inequality

Pr
[
b = b′ | Real

]− Pr
[
b = b′ | Rand

] ≤ Advind
G (k, t2),

where t2 = O(t+n2). We first claim that Pr
[
b = b′ | Real

] = PrD[Succ]. To see this, note
that when Real occurs we have M = G. But then G is distributed exactly as this would be
in a real execution. Since D′ outputs 1 iff D succeeds, Pr

[
b = b′ | Real

] = PrD[Succ].
Next, we estimate the amount of Pr

[
b = b′ | Rand

]
. From the construction of D′, we can

re-write this probability by

Pr
[
b = b′ | Rand

] = Pr

[
M← Uk,n, b← U1, e← En,w, r ← Uk1 ,

s0 ← Un, s1 ← rM1 ⊕ e, b′ ← D((M, w), sb)

∣∣∣∣ b = b′
]

.

But we know from Lemma 3 that

2(n + 1) · Advoneway
LPNθ

(k1, t1, q1) ≥ Pr
[
b = b′ | Rand

]− 1

2
,

where q1 = O(nδ′−2 log k1), t1 = O((t + n2)k1δ
′−2 log k1) and δ′ = δ

n+1 .
By combining these, we obtain

Advind
G (k, t2) ≥ Pr

[
b = b′ | Real

]− Pr
[
b = b′ | Rand

]

≥ Pr
D
[Succ] − 1

2
− 2(n + 1) · Advoneway

LPNθ
(k1, t1, q1).

A simple modification yields

Advind
G (k, t2)+ 2(n + 1) · Advoneway

LPNθ
(k1, t1, q1) ≥ Pr

D
[Succ] − 1

2

and therefore

2 · Advind
G (k, t2)+ 4(n + 1) · Advoneway

LPNθ
(k1, t1, q1) ≥ δ.

This concludes the proof. ��
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Remember the form of the randomized McEliece cryptosystem, that is

c = [r |m] G⊕ e = {rG1 ⊕ e} ⊕ mG2.

In the above lemma, we proved that Enc1
RME(pk, r) = rG1 ⊕ e is pseudorandom for every

ppt algorithm. Thus, the randomized McEliece cryptosystem is the admissible cryptosystem.
By Lemma 1 and Lemma 4, we can conclude with the following: If there exists an IND-CPA
adversary D which runs in time t , then

2 · Advind
G (k, t2)+ 4(n + 1) · Advoneway

LPNθ
(k1, t1, q1) ≥ Advsem

D,RME(k),

where q1 = O(nδ′−2 log k1), t1 = O((t + n2)k1δ
′−2 log k1), t2 = O(t + n2) and δ′ =

δ
n+1 . Therefore, if G is indistinguishable and the LPN problem is hard then the randomized
McEliece cryptosystem is IND-CPA secure.

4.3 Proof of proposition 2

In the above proof, Lemma 2 played an important role. There is a similar result in [11] which
is useful for proving the semantic security of the randomized Niederreiter cryptosystem. The
result stated in [11] is that, for a randomly chosen vector r ∈ {0, 1}n1 of weight w1 and
n1 × (n − k) binary random matrix R1, rR1 is pseudorandom. So we can prove its semantic
security with the similar strategy. That is, recall the form of the randomized Niederreiter
cryptosystem: c = [r |m]H, where r is the random vector of weight w1. Let H1 and H2 be
n1×(n−k) and n2×(n−k) sub-matrices of H, respectively, such that HT = [HT

1 |HT
2 ]. Sim-

ilar to the randomized McEliece cryptosystem, we can show that the randomized Niederreiter
cryptosystem is partible by re-writing the above equation as follows:

c = [r |m]H = {rH1} ⊕ mH2.

Thus it only remains to prove pseudorandomness of Enc1
RNR(pk, r ′) = rH1, where r ′ is the

random string for generating a random string r ∈ {0, 1}n1 of weight w1. We utilize the result
of [11]3.

Theorem 1 ([11,13]) If there exists an algorithm D which runs in time t, and such that

Pr
[
r ← En1,w1 , R1 ← Un1,n−k | D((R1, w1), rR1) = 1

]

−Pr
[
s ← Un−k, R1 ← Un1,n−k | D((R1, w1), s) = 1

] ≥ δ,

then 4 3
√

n1 · Advoneway
SDw1

(n1, t ′) ≥ δ, where t ′ = O(n2(t + n2)/δ2).

Let R1 be the n1 × (n − k) binary matrix, let R2 be the n2 × (n − k) binary matrix, and
let RT = [RT

1 |RT
2 ]. The following corollary can be easily deduced from the above theorem.

Corollary 2 If there exists an algorithm D which runs in time t, and such that

Pr
[
r ← En1,w1 , R← Un,n−k | D((R, w1), rR1) = 1

]

−Pr
[
s ← Un−k, R← Un,n−k | D((R, w1), s) = 1

] ≥ δ,

then 4 3
√

n1 · Advoneway
SDw1

(n1, t ′) ≥ δ, where t ′ = O(n2(t + n2)/δ2).

3 It uses the Goldreich-Levin (hardcore) predicate theorem [13,14] to prove the pseudorandomness but the
authors did not estimate the reduction cost. To estimate the reduction cost, we simply combine Proposition 2.5.3
in [13] and Theorem 1 in [11].
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We follow the same strategy as with Proposition 1: We replace the random matrix R with
the (pseudorandom) public key matrix H and show Enc1

RNR(pk, r ′) = rH1 is pseudoran-
dom, where r ′ is used to produce a random string r ∈ {0, 1}n1 of weight w1. The proof of
the following lemma is very similar to that of Lemma 4, so we only provide its sketch.

Lemma 5 If there exists an algorithm D which runs in time t and such that

Pr
[
r ← En1,w1 , (H, w)← GenNR(1k) | D((H, w), rH1) = 1

]

−Pr
[
s ← Un−k, (H, w)← GenNR(1k) | D((H, w), s) = 1

]
≥ δ,

then

4 · 3
√

n1 · Advoneway
SDw1

(n1, t ′)+ 2 · Advind
H (k, O(t + n2)) ≥ δ,

where t ′ = O(n2(t + 2n2)/δ2).

Proof Sketch We will say that the algorithm D succeeds iff it outputs 1 when given input
was of the form rH1. We denote this event by Succ. We construct an adversary D′ which
distinguishes the random matrix R from the matrix H as follows.

D′(M, w)

Divide M into M1 and M2 such that MT = [MT
1 |MT

2 ], M1 is a n1 × (n − k) sub-matrix
and M2 is a n2 × (n − k) sub-matrix.
b← U1

If b = 1
r ← En1,w1 , set s1 = rM1 and run D((M, w), s1) to obtain b′

Else
s0 ← Un−k , and run D((M, w), s0) to obtain b′

Endif
If b = b′ then output 1, and otherwise 0

Let Rand be the event that the matrix M was chosen randomly from uniform distribution
Un,n−k , and let Real be the event that the matrix was generated by GenRNR. Then from (3),
we can deduce the inequality

Pr
[
b = b′ | Real

]− Pr
[
b = b′ | Rand

] ≤ Advind
H (k, O(t + n2)).

Now, we are going to estimate Pr
[
b = b′ | Real

]
and Pr

[
b = b′ | Rand

]
. First, we note

that, similarly to the proof of Lemma 4, we have Pr
[
b = b′ | Real

] = PrD[Succ]. And we
can bound Pr

[
b = b′ | Rand

]− 1/2 by Corollary 2:

Pr
[
b = b′ | Rand

]− 1/2 ≤ 2 · 3
√

n1 · Advoneway
SDw1

(n1, t ′),

where t ′ = O(n2(t + 2n2)/δ2).
Combining all these together, we have

Pr
D
[Succ] − 1

2
= Pr

[
b = b′ | Real

]− 1

2

≤ Pr
[
b = b′ | Rand

]+ Advind
H (k, O(t + n2))− 1

2

≤ 2 · 3
√

n1 · Advoneway
SDw1

(n1, t ′)+ Advind
H (k, O(t + n2)).

Therefore, δ ≤ 4 · 3
√

n1 · Advoneway
SDw1

(n1, t ′)+ 2 · Advind
H (k, O(t + n2)). ��
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The above lemma states that Enc1
RNR(pk, r ′) = rH1, where r ′ is a random value for

generating r , is pseudorandom and thus we can say that the randomized Niederreiter cryp-
tosystem is the admissible cryptosystem. By combining Lemma 1 and Lemma 5 we can
say

4 · 3
√

n1 · Advoneway
SDw1

(n1, t ′)+ 2 · Advind
H (k, O(t + n2)) ≥ Advsem

RNR(k, t),

where t ′ = O(n2(t + n2)/δ2). Thus we can conclude that the randomized Niederreiter
cryptosystem is IND-CPA cryptosystem if H is indistinguishable and syndrome decoding
problem is hard.

5 Estimation of the security parameters

In all the cryptosystems, if the adversary has some partial information on the plaintext, the
time complexity of recovering the entire plaintext is reduced. Particularly, let us consider the
original McEliece cryptosystem. Let m = [ml |mr ] for ml ∈ {0, 1}k1 and mr ∈ {0, 1}k2 and
let mr be the partial information which the adversary knows in advance. Since

c = mG⊕ e = mlG1 ⊕ mr G2 ⊕ e,

he can compute mr G2 and

c′ = mlG1 ⊕ mr G2 ⊕ e ⊕ mr G2 = mlG1 ⊕ e.

Thus, the time-complexity of recovering the entire m will be reduced to that of decrypting
only c′, hereby changing from (2) to the following:

(
n
k1 + 1

)
·
(

n − w

k1 + 1

)−1

. (8)

In this paper, we consider the semantically secure variant of the McEliece cryptosystem. In
our scenario, the adversary knows that ciphertext is the encryption of either m0 or m1. Thus,
we need to consider that the adversary knows the partial information of the given ciphertext
and this situation is very similar to the above attack. That is, if the adversary can recover r ,
then he can distinguish the encryptions of m0 and m1. We present the estimated lower-bound

Table 1 Time complexity for the
“low weight codeword” attack

(n, k, w)⇒ (2048, 1289, 69) (4096, 2560, 128)

k2 = 1 2101.7 2186.1

k2 = 2 2101.6 2186.0

k2 = 4 2101.3 2185.7

k2 = 8 2101.7 2185.2

k2 = 16 299.7 2184.2

k2 = 32 297.6 2182.2

k2 = 64 293.4 2178.4

k2 = 128 285.7 2170.8

k2 = 256 271.72 2156.6

k2 = 512 248.6 2131.05

k2 = 1024 214.1 288.63
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on the size of the public key in terms of time complexity of this attack in Table 1. This time
complexity is estimated according to (8).

6 Concluding remarks

We formally show that random padding of the plaintext makes the McEliece and the
Niederreiter cryptosystems IND-CPA secure. It is worth noting that both these results do
not allow tight reductions. Improving them, or, in other words, providing tightness for [16]
and [11] is an open problem.

Another interesting open question, in the light of [20], is whether the security of the
randomized versions of the McEliece and the Niederreiter cryptosystems is equivalent or
not.

Finally, one might want to extend our result in order to achieve IND-CCA2 secure version
of the McEliece as well as the Niederreiter cryptosystems without employing random oracles.
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