#include "decoding.h" void compute_error_locator (bvector&syndrome, gf2m&fld, polynomial& goppa, std::vector& sqInv, polynomial&out) { if (syndrome.zero() ) { //ensure no roots out.resize (1); out[0] = 1; return; } polynomial v; syndrome.to_poly (v, fld); v.inv (goppa, fld); // v=Synd^-1 mod goppa if (v.size() < 2) v.resize (2, 0); v[1] = fld.add (1, v[1]); //add x v.sqrt (sqInv, fld); //v = sqrt((1/s)+x) mod goppa polynomial a, b; v.mod_to_fracton (a, b, goppa, fld); a.square (fld); b.square (fld); b.shift (1); a.add (b, fld); //new a = a^2 + x b^2 a.make_monic (fld); //now it is the error locator. out = a; } bool evaluate_error_locator_dumb (polynomial&a, bvector&ev, gf2m&fld) { ev.clear(); ev.resize (fld.n, 0); for (uint i = 0; i < fld.n; ++i) { if (a.eval (i, fld) == 0) { ev[i] = 1; //divide the polynomial by (found) linear factor polynomial t, q, r; t.resize (2, 0); t[0] = i; t[1] = 1; a.divmod (t, q, r, fld); //if it doesn't divide, die. if (r.degree() >= 0) { ev.clear(); return false; } a = q; } } //also if there's something left, die. if (a.degree() > 0) { ev.clear(); return false; } return true; }