#include "codecrypt.h" using namespace ccr; uint polynomial::degree() const { uint r = -1; for (uint i = 0; i < size(); ++i) if (item (i) ) r = i; return r; } void polynomial::strip() { resize (degree() + 1); } void polynomial::add (const polynomial&f) { uint df = f.degree(); if (df > degree() ) resize (df + 1); for (uint i = 0; i <= df; ++i) item (i) = item (i) ^ f[i]; } void polynomial::mod (const polynomial&f) { uint df = f.degree(); uint d; // while there's place to substract, reduce by x^(d-df)-multiply of f while ( (d = degree() ) >= df) { for (uint i = 0; i <= df; ++i) item (i + d - df) = item (i + d - df) ^ f[i]; } strip(); } void polynomial::mult (const polynomial&b) { polynomial a = *this; clear(); uint i, j, da, db; da = a.degree(); db = b.degree(); resize (da + db + 1, 0); for (i = 0; i <= da; ++i) if (a[i]) for (j = 0; j <= db; ++j) item (i + j) = item (i + j) ^ b[j]; } polynomial polynomial::gcd (polynomial b) { polynomial a = *this; //eukleides if (a.degree() < 0) return b; for (;;) { if (b.degree() < 0) return a; a.mod (b); if (a.degree() < 0) return b; b.mod (a); } //unreachable return polynomial(); } bool polynomial::is_irreducible() { //Ben-Or irreducibility test polynomial xi; //x^(2^i) in our case polynomial xmodf, t; xmodf.resize (2); //precompute (x mod f) xmodf[0] = 0; xmodf[1] = 1; //x xmodf.mod (*this); //mod f uint n = degree(); for (uint i = 1; i <= n / 2; ++i) { t = xi; t.mult (xi); //because mult would destroy xi on xi.mult(xi) xi = t; t.add (xmodf); t = t.gcd (*this); if (t.degree() != 0) //gcd(f,x^2^i - x mod f) != 1 return false; } return true; } void polynomial::generate_random_irreducible (uint s, prng & rng) { resize (s + 1); item (s) = 1; //degree s item (0) = 1; //not divisible by x^1 for (uint i = 1; i < s; ++i) item (i) = rng.random (2); while (!is_irreducible() ) { uint pos = 1 + rng.random (s - 1); item (pos) = !item (pos); } }