#include "codecrypt.h" using namespace ccr; uint bvector::hamming_weight() { uint r = 0; for (uint i = 0; i < size(); ++i) if ( (*this) [i]) ++r; return r; } void bvector::add (const bvector&a) { if (a.size() > size() ) resize (a.size(), 0); for (uint i = 0; i < a.size(); ++i) item (i) = item (i) ^ a[i]; } void bvector::add_range (const bvector&a, uint b, uint e) { if (e > size() ) resize (e, 0); for (uint i = b; i < e; ++i) item (i) = item (i) ^ a[i]; } void bvector::add_offset (const bvector&a, uint offset) { if (offset + a.size() > size() ) resize (offset + a.size(), 0); for (uint i = 0; i < a.size(); ++i) item (offset + i) = item (offset + i) ^ a[i]; } bool bvector::operator* (const bvector&a) { bool r = 0; uint s = size(), i; if (s > a.size() ) s = a.size(); for (i = 0; i < s; ++i) r ^= (item (i) &a[i]); return r; } bool bvector::zero() const { for (uint i = 0; i < size(); ++i) if (item (i) ) return false; return true; } void bvector::to_poly (polynomial&r, gf2m&fld) { r.clear(); if (size() % fld.m) return; //impossible r.resize (size() / fld.m, 0); for (uint i = 0; i < size(); ++i) if (item (i) ) r[i/fld.m] |= (1 << (i % fld.m) ); } void bvector::from_poly (const polynomial&r, gf2m&fld) { clear(); resize (r.size() *fld.m, 0); for (uint i = 0; i < size(); ++i) item (i) = (r[i/fld.m] >> (i % fld.m) ) & 1; } void bvector::to_poly_cotrace (polynomial&r, gf2m&fld) { r.clear(); if (size() % fld.m) return; //impossible uint s=size()/fld.m; r.resize (s, 0); for (uint i = 0; i < size(); ++i) if (item (i) ) r[i%s] |= (1 << (i/s) ); } void bvector::from_poly_cotrace (const polynomial&r, gf2m&fld) { clear(); uint s=r.size(); resize (s*fld.m, 0); for (uint i = 0; i < size(); ++i) item (i) = (r[i%s] >> (i/s) ) & 1; } /* * utility colex (un)ranking for niederreiter and workalikes. * see Ruskey's Combinatorial Generation, algorithm 4.10 * * TODO use (external) cache for combination numbers to speed this up. */ #include static void combination_number (uint n, uint k, mpz_t& r) { mpz_t t; if (k > n) { mpz_set_ui (r, 0); return; } if (k * 2 > n) k = n - k; mpz_set_ui (r, 1); mpz_init (t); //upper part n*(n-1)*(n-2)*...*(n-k+1) for (uint i = n; i > n - k; --i) { mpz_swap (t, r); mpz_mul_ui (r, t, i); } //lower part (div k!) for (uint i = k; i > 1; --i) { mpz_swap (t, r); mpz_tdiv_q_ui (r, t, i); } mpz_clear (t); } static void bvector_to_mpz (bvector&v, mpz_t&r) { mpz_set_ui (r, 0); mpz_realloc2 (r, v.size() ); for (uint i = 0; i < v.size(); ++i) if (v[i]) mpz_setbit (r, i); else mpz_clrbit (r, i); } static void mpz_to_bvector (mpz_t&x, bvector&r) { r.resize (mpz_sizeinbase (x, 2) ); for (uint i = 0; i < r.size(); ++i) r[i] = mpz_tstbit (x, i); } void bvector::colex_rank (bvector&r) { mpz_t res, t, t2; mpz_init_set_ui (res, 0); mpz_init (t); mpz_init (t2); uint i, j; j = 1; for (i = 0; i < size(); ++i) if (item (i) ) { combination_number (i, j, t); mpz_swap (t2, res); mpz_add (res, t, t2); ++j; } mpz_to_bvector (res, r); mpz_clear (t); mpz_clear (t2); mpz_clear (res); } #include void bvector::colex_unrank (bvector&res, uint n, uint k) { mpz_t r, t, t2; mpz_init (r); mpz_init (t); mpz_init (t2); bvector_to_mpz (*this, r); res.clear(); res.resize (n, 0); uint p; for (uint i = k; i > 0; --i) { p = i; for (;;) { combination_number (p, i, t); if (mpz_cmp (t, r) > 0) break; ++p; } combination_number (p - 1, i, t); mpz_swap (t2, r); mpz_sub (r, t2, t); if (p > n) continue; //overflow protection res[p-1] = 1; } mpz_clear (r); mpz_clear (t); mpz_clear (t2); }