
Semantically Secure
McEliece Public-Key Cryptosystems
–Conversions for McEliece PKC–

Kazukuni Kobara and Hideki Imai

Institute of Industrial Science, The University of Tokyo
Roppongi, Minato-ku, Tokyo 106, Japan

TEL : +81-3-3402-6231 Ext 2327
FAX : +81-3-3402-7365

{kobara,imai}@iis.u-tokyo.ac.jp

Abstract. Almost all of the current public-key cryptosystems (PKCs)
are based on number theory, such as the integer factoring problem and
the discrete logarithm problem (which will be solved in polynomial-time
after the emergence of quantum computers). While the McEliece PKC
is based on another theory, i.e. coding theory, it is vulnerable against
several practical attacks. In this paper, we carefully review currently
known attacks to the McEliece PKC, and then point out that, without
any decryption oracles or any partial knowledge on the plaintext of the
challenge ciphertext, no polynomial-time algorithm is known for invert-
ing the McEliece PKC whose parameters are carefully chosen. Under the
assumption that this inverting problem is hard, we propose slightly mod-
ified versions of McEliece PKC that can be proven, in the random oracle
model, to be semantically secure against adaptive chosen-ciphertext at-
tacks. Our conversions can achieve the reduction of the redundant data
down to 1/3 ∼ 1/4 compared with the generic conversions for practical
parameters.

1 Introduction

Since the concept of public-key cryptosystem (PKC) was introduced by Diffie
and Hellman [5], many researchers have proposed numerous PKCs based on
various problems, such as integer factoring, discrete logarithm, decoding a large
linear code, knapsack, inverting polynomial equations and so on. While some of
them are still alive, most of them were broken by cryptographers due to their
intensive cryptanalysis. As a result, almost all of the current (so-called) secure
systems employ only a small class of PKCs, such as RSA and elliptic curve
cryptosystems, which are all based on either integer factoring problem (IFP) or
discrete logarithm problem (DLP). This situation would cause a serious problem
after someone discovers one practical algorithm which breaks both IFP and DLP
in polynomial-time. No one can say that such an algorithm will never be found.
Actually, Shor has already found a (probabilistic) polynomial-time algorithm in
[25], even though it requires a quantum computer that is impractical so far. In

K. Kim (Ed.): PKC 2001, LNCS 1992, pp. 19–35, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

20 Kazukuni Kobara and Hideki Imai

order to prepare for that unfortunate situation, we need to find another secure
scheme relying on neither IFP nor DLP.
The McEliece PKC, proposed by R.J. McEliece in [18], is one of few alter-

natives1 for PKCs based on IFP or DLP. It is based on the decoding problem
of a large linear code with no visible structure which is conjectured to be an
NP-complete problem.2 While no polynomial-time algorithm has been discov-
ered yet for decoding an arbitrary linear code of large length with no visible
structure, a lot of attacks (some of them work in polynomial-time) are known
to the McEliece PKC [1,3,4,12,15,28,17,13].
In this paper, we carefully review these attacks in Section 3, and then point

out that all the polynomial-time attacks to the McEliece PKC require either de-
cryption oracles or partial knowledge on the corresponding plaintext of the chal-
lenge ciphertext. And then without them, no polynomial-time attack is known
to invert the McEliece PKC (whose parameters are carefully chosen). Under the
assumption that this inverting problem is hard, we convert this problem into
semantically secure McEliece PKCs against adaptive chosen-ciphertext attacks
(CCA2) by introducing some appropriate conversions. We discuss which con-
versions are appropriate for the McEliece PKC in Section 4. While some of the
generic conversions proposed in [24,9] are also applicable to the McEliece PKC,
they have a disadvantage in data redundancy (which is defined by the difference
between the ciphertext size and the plaintext size). A large amount of redundant
data is needed for the generic conversions since the block size of the McEliece
PKC is relatively large. Our conversions in Section 4.4 need less redundant data
than the generic ones.

2 McEliece Public-Key Cryptosystem

In this section, we briefly describe the McEliece PKC.

Key generation: Generate the following three matrices G,S,P :
G: k × n generator matrix of a binary Goppa code which can correct up

to t errors, and for which an efficient decoding algorithm is known. The
parameter t is given by

⌈
dmin−1

2

⌉
where dmin denotes the minimum Ham-

ming distance of the code.
S: k × k random binary non-singular matrix
P : n × n random permutation matrix.
Then, compute the k × n matrix G′ = SGP .
Secret key: (S,G, P)
Public key: (G′, t)

Encryption: The ciphertext c of a message m is calculated as follows:

c = mG′ ⊕ z (1)
1 Another alternative may be a quantum public-key cryptosystem [21] which will be
available after the emergence of quantum computers.

2 The complete decoding problem of an arbitrary linear code is proven to be NP-
complete in [29].

Semantically Secure McEliece Public-Key Cryptosystems 21

wherem is represented in a binary vector of length k, and z denotes a random
binary error vector of length n having t 1’s.

Decryption: First, calculate cP−1

cP−1 = (mS)G ⊕ zP−1 (2)

where P−1 denotes the inverse of P . Second, apply the decoding algorithm
EC for G to cP−1. Since the Hamming weight of zP−1 is t, one can obtain
mS

mS = EC(cP−1). (3)

The plaintext of c is given by

m = (mS)S−1. (4)

3 Attacks to McEliece PKC

In this section, we review currently known attacks to the McEliece PKC.
While no efficient algorithm has been discovered yet for decomposing G′

into (S,G, P) [19], a structural attack has been discovered in [17]. This attack
reveals part of structure of a weak G′ which is generated from a “binary” Goppa
polynomial. However, this attack can be avoided simply by avoiding the use of
such weak public keys. (This implies G should not be a BCH code since it is
equivalent to a Goppa code whose Goppa polynomial is 1 · x2t, i.e. “binary”. 3)
Next case we have to consider is that an equivalent Goppa code of G′ (which is
not necessarily G) and whose decoding algorithm is known happens to be found.
This probability is estimated in [1][10], and then shown to be negligibly small.
All the other known attacks are for decrypting ciphertexts without breaking

public-keys. We categorize them into the following two categories, critical attacks
and non-critical attacks, according to whether these attacks can be avoided sim-
ply by enlarging the parameter size or not. If avoided, we categorize it in the
non-critical attacks. Otherwise, in the critical ones. Interestingly, all the critical
attacks require either additional information, such as partial knowledge on the
target plaintexts, or an decryption oracle which can decrypt arbitrarily given
ciphertexts except the challenge ciphertexts. And then without this additional
information and this ability, no efficient algorithm is known to decrypt an arbi-
trarily given ciphertext of the McEliece PKC.

3.1 Non-critical Attacks

The following two attacks can be avoided simply by enlarging the parameter size
or by applying Loidreau’s modification [16] without enlarging the parameter size.
Thus, not critical.
3 In [14], a variant of McEliece PKC, where G is a BCH code, was broken. However
it is not clear their attack works correctly since further information has failed to
appear.

22 Kazukuni Kobara and Hideki Imai

Generalized Information-Set-Decoding Attack. Let G′
k, ck and zk denote

the k columns picked from G′, c and z, respectively. They have the following
relationship

ck = mG′
k ⊕ zk. (5)

If zk = 0 and G′
k is non-singular, m can be recovered by [1]

m = ckG
′−1
k . (6)

Even if zk �= 0,m can be recovered by guessing zk among small Hamming weights
[15] (we call this the generalized information-set-decoding (GISD) attack). The
correctness of the recovered plaintext m is verifiable by checking whether the
Hamming weight of c ⊕ mG′ is t or not.
The computational cost of this generalized version (where zk is guessed) is

slightly faster than the original one (where zk is supposed to be 0), but it is still
infeasible for appropriate parameters since its computational cost is asymptoti-
cally lower bounded by C(n, k)/C(n − t, k).

Finding-Low-Weight-Codeword Attack. This attack uses an algorithm
which finds a low-weight codeword among codewords generated by an arbitrary
generator matrix using a database obtained by pre-computation [26,4]. Since the
minimum-weight codeword of the following (k + 1)× n generator matrix

[
G′

c

]
(7)

is the error vector z of c where c = mG′ ⊕ z, this algorithm can be used to
recover m from a given ciphertext c.
The precise computational cost of this attack is evaluated in [4], and then

shown to be infeasible to invert c for appropriate parameters, e.g. n ≥ 2048 and
optimized k and t, even though the original parameters (n, k, t) = (1024, 524, 50)
suggested in [18] is feasible with the work factor of 264.2. (Under the assumption
that each iteration is independent, the expected computational cost of this attack
is asymptotically lower bounded by C(n, k + 1)/C(n − t, k + 1) and therefore it
is infeasible for appropriate parameters.)

3.2 Critical Attacks

The following attacks cannot be avoided by enlarging the parameter size or by
applying Loidreau’s modification [16]. Therefore critical.

Known-Partial-Plaintext Attack. The partial knowledge on the target plain-
text drastically reduces the computational cost of the attacks to the McEliece
PKC [4,13].

Semantically Secure McEliece Public-Key Cryptosystems 23

For example, let ml and mr denote the left kl bits and the remaining kr bits
in the target plaintext m, i.e. k = kl + kr and m = (ml||mr). Suppose that an
adversary knows mr. Then the difficulty of recovering unknown plaintext ml in
the McEliece PKC with parameters (n, k) is equivalent to that of recovering the
full plaintext in the McEliece PKC with parameters (n, kl) since

c = mG′ ⊕ z

c = mlG
′
l ⊕ mrG

′
r ⊕ z

c ⊕ mrG
′
r = mlG

′
l ⊕ z

c′ = mlG
′
l ⊕ z, (8)

where G′
l and G′

r are the upper kl rows and the remaining lower kr rows in G′,
respectively.
If kl is fixed to a small value, the computational cost of recovering the un-

known kl bits from c, mr and G′ is a polynomial of n since even if non-critical
attacks are used, it is asymptotically bounded by k3l C(n, kl)/C(n − t, kl) where
kl is a small constant.

Related-Message Attack. This attack uses the knowledge on the relationship
between the target plaintexts [3].
Suppose two messages m1 and m2 are encrypted to c1 and c2, respectively,

where c1 = m1G
′ ⊕ z1, c2 = m2G

′ ⊕ z2, and z1 �= z2. If an adversary knows their
linear relation between the plaintexts, e.g. δm = m1 ⊕ m2. Then the adversary
can efficiently apply the GISD attack to either c1 or c2 by choosing k coordinates
whose values are 0 in (δmG′ ⊕ c1 ⊕ c2). Since z1 ⊕ z2 = δmG′ ⊕ c1 ⊕ c2 and the
Hamming weight t of the error vector z is far smaller than n/2. Therefore a
coordinate being 0 in (δmG′ ⊕ c1 ⊕ c2) should also be 0 in both z1 and z2 with
the high probability of
When the same message is encrypted twice (or more) using different error

vectors z1 and z2, the value z1⊕z2 is simply given by c1⊕c2. This case is referred
to as the message-resend attack [3].

Reaction Attack. This attack might be categorized as a chosen-ciphertext at-
tack (CCA), but uses a weaker assumption [12] than the CCA: the adversary
observes only the reaction of the receiver who has the private-key, but does not
need to receive its decrypted plaintext. (Similar attack is independently pro-
posed in [28]. In this attack, an adversary receives the corresponding plaintexts.
Therefore this attack is categorized as a CCA.)
The idea of this attack is the following. The adversary flips one or a few bits

of the target ciphertext c. Let c′ denote the flipped ciphertext. The adversary
transmits c′ to the proper receiver and observes his/her reaction. The receiver’s
reactions can be divided into the following two:

24 Kazukuni Kobara and Hideki Imai

Reaction A: Return a repeat request to the adversary due to uncorrectable
error or due to the meaningless plaintext.

Reaction B: Return an acknowledgment or do nothing since the proper plain-
text m is decrypted.

If the total weight of the error vector does not exceed t after the flipping, the reac-
tion B is observed. Otherwise the reaction A is observed. Therefore by repeating
the above observations polynomial times of n, the adversary can determine the
error vector. Once the error vector is determined, the corresponding plaintext is
easily decrypted using the GISD attack.

Malleability Attack. This attack allows an adversary to alter any part of the
corresponding plaintext of any given ciphertext c without knowing the plaintext
m, i.e. the adversary can generate a new ciphertext c′ whose plaintext is m′ =
m ⊕ δm from any given ciphertext c without knowing m [13,28].
This attack is described as follows. Let G′[i] denote the i-th row of the public

matrix G′ and I = {i1, i2, · · ·} denote a set of coordinates ij whose value is 1 in
δm. The ciphertext c′ is calculated by

c′ = c
⊕
i∈I

G′[i] = (m ⊕ δm)G′ ⊕ z = m′G′ ⊕ z. (9)

This attack tells us that the McEliece PKC does not satisfy non-malleability[6]
even against passive attacks, such as chosen-plaintext attacks. And then under
chosen-ciphertext scenario where an adversary can ask an decryption oracle to
decrypt a polynomial number of ciphertexts (excluding the challenge ciphertext
c), the adversary can decrypt any given ciphertext c by the following way. First
the adversary asks the oracle to decrypt c′, then the oracle returns m′ = m⊕δm.
Thus he/she can recover the target plaintext of c by m = m′ ⊕ δm.

4 Conversions for McEliece PKC

As mentioned in Section 3, without any decryption oracles and any partial knowl-
edge on the corresponding plaintext of the challenge ciphertext, no polynomial-
time algorithm is known for inverting the McEliece PKC (whose parameters are
carefully chosen). Under the assumption that this inverting problem is hard, this
problem can be converted into the hard problem of breaking the indistinguisha-
bility of encryption against critical attacks (or more generally against adaptive
chosen-ciphertext attacks) by introducing appropriate conversions in the random
oracle mode. In this section, we discuss which conversions are appropriate for
the McEliece PKC and which are not.

4.1 Notations

We use the following notations in this paper:

Semantically Secure McEliece Public-Key Cryptosystems 25

C(n, t) : The number of combinations taking t out of n elements.
Prep(m) : Preprocessing to a message m, such as data-compression, data-

padding and so on. Its inverse is represented as Prep−1().
Hash(x) : One-way hash function of an arbitrary length binary string x to a

fixed length binary string. When the output domain is ZN where
N = C(n, t), we use Hashz(x) instead of Hash(x).

Conv(z̄) : Bijective function which converts an integer z̄ ∈ ZN where
N = C(n, t) into the corresponding error vector z. Its inverse
is represented as Conv−1().

Gen(x) : Generator of a cryptographically secure pseudo random sequences
of arbitrary length from a fixed length seed x.

Len(x) : Bit-length of x.
Msbx1(x2) : The left x1 bits of x2.
Lsbx1(x2) : The right x1 bits of x2.
Const : Predetermined constant used in public.
Rand : Random source which generates a truly random (or computation-

ally indistinguishable pseudo random) sequence.
EMcEliece(x, z) : Encryption of x using the original McEliece PKC with an error

vector z.
DMcEliece(x) : Decryption of x using the original McEliece PKC.

4.2 Insufficient Conversions for McEliece PKC

OAEP Conversion. In [2], Bellar and Rogaway proposed a generic conver-
sion called OAEP (Optimal Asymmetric Encryption Padding) which converts a
OWTP (One-Way Trapdoor Permutation), such as RSA primitive, into a PKC
which is indistinguishable against adaptive chosen-ciphertext attacks (CCA2).
The McEliece PKC with this OAEP conversion is given in Fig.1.4 Unfortunately,
this conversion does not work correctly since the reaction attack is still appli-
cable. This does not mean the OAEP conversion has a fault, but the McEliece
primitive is not a permutation.

Fujisaki-Okamoto’s Simple Conversion. In [8], Fujisaki and Okamoto pro-
posed a generic and simple conversion from a PKC which is indistinguishable
against CPA (Chosen-Plaintext Attacks) into a PKC which is indistinguish-
able against CCA2. The McEliece PKC with this conversion is given in Fig.2.4

Unfortunately, this conversion does not work correctly since the known-partial-
plaintext attack efficiently works unless Len(r) is close to k.
This does not mean Fujisaki-Okamoto’s simple conversion has a fault, but

the original McEliece PKC is distinguishable even against CPA. Any passive
adversary (who do not use decryption oracle) can guess which message of m0
andm1 corresponding plaintext of the given ciphertext c̄ of the original McEliece
PKC by seeing whether the Hamming weight of mbG

′ ⊕ c̄ is t or not, where
b ∈ {0, 1}.
4 Due to the limitation of pages, we omit the corresponding decryption process.

26 Kazukuni Kobara and Hideki Imai

Encryption of m:

r, z̄ := Rand

m̄ := Prep(m)

y1 := (m̄||Const)⊕ Gen(r)

y2 := r ⊕ Hash(y1)

z := Conv(z̄)

c := EMcEliece((y1||y2), z)

return c

Fig. 1. OAEP conversion + McEliece
PKC

Encryption of m:

r := Rand

m̄ := Prep(m)

z := Conv(Hashz(m̄||r))
c := EMcEliece((m̄||r), z)

return c

Fig. 2. Fujisaki-Okamoto’s simple
conversion + McEliece PKC

Encryption of m:

r, r′ := Rand

m̄ := Prep(m)

z := Conv(Hashz(m̄||r))
y1 := EMcEliece(r′, z)

y2 := Gen(r′)⊕ (m̄||r)
c := y1||y2

return c

Fig. 3. Pointcheval’s generic conver-
sion

Encryption of m:

r := Rand

m̄ := Prep(m)

z := Conv(Hashz(m̄||r))
y1 := EMcEliece(r, z)

y2 := Gen(r)⊕ m̄

c := y1||y2

return c

Fig. 4. Fujisaki-Okamoto’s generic
conversion

4.3 Generic Conversions Being Applicable to McEliece PKC

Pointcheval’s Generic Conversion. In [24], Pointcheval proposed a generic
conversion from a PTOWF (Partially Trapdoor One-Way Function) to a PKC
which is indistinguishable against CCA2.
The definition for f(x, y) to be PTOWF is the following:

– For any polynomial-time adversary and for any given z = f(x, y), it is com-
putationally infeasible to get back the partial preimage x,

– With some extra secret information, it is easy to get back the x.

Not only ElGamal[7], Okamoto-Uchiyama[22], Naccache-Stern[20] and Paillier[23]
primitives, but also McEliece primitive can be categorized in PTOWF. Therefore
Pointcheval’s generic conversion is also applicable to the McEliece PKC with the
same proof in [24]. The McEliece PKC with this conversion is given in Fig.3.4

Fujisaki-Okamoto’s Generic Conversion. In [9], Fujisaki and Okamoto pro-
posed a generic conversion from OWE (One-Way Encryption), which includes
both OWTP and PTOWF, into a PKC being indistinguishable against ACC2.

Semantically Secure McEliece Public-Key Cryptosystems 27

Encryption of m:

r := Rand

m̄ := Prep(m)

z̄ := Hashz(r||m̄)
(y1||y2) := Gen(z̄)⊕ (r||m̄)

z := Conv(z̄)

c := EMcEliece(y1, z)||y2

return c

Decryption of c:

y1 := DMcEliece(Msbn(c))

z := Msbn(c)⊕ y1G
′

z̄ := Conv−1(z)

(r||m̄) := Gen(z̄)⊕ (y1||y2)

If z̄=Hashz(r||m̄)
return Prep−1(m̄)

Otherwise reject c

Fig. 5. Conversion α : Len(y1) = k and Len(y2) = Len(r||m̄) − k. If Len(r||m̄) = k,
remove y2.

Needless to say, McEliece primitive can be categorized in the OWE, and there-
fore their generic conversion is applicable to the McEliece PKC with the same
proof in [9]. The McEliece PKC with this conversion5 is given in Fig.4.4

4.4 Our Specific Conversions

While one can design semantically-secure McEliece PKCs by simply employing
the above generic conversions, they are not necessarily suited for the McEliece
PKC. Since the block size of the McEliece PKC is larger than the well-known
PKCs, such as RSA, elliptic curve cryptosystems and so on, the redundancy
of data (which is defined by the difference between the bit length of a plain-
text and its corresponding ciphertext) becomes large. For example, for (n, k) =
(4096, 2560), the generic conversions require more than or equal to 4096 bits for
the overhead data. On the other hand, our conversions described in Fig. 5 ∼
7 require less overhead data than the generic ones. For example, for the same
settings and Len(r) = 160 and Len(Const) = 160, our conversion γ requires
only 1040 bits. (This might still be large but interestingly this value is smaller
than the original McEliece PKC.) The comparison results are summarized in
Table 1.
The point of the conversion γ is that not only a plaintext but also an error

vector is taken from a part of y1 (or (y2||y1)). This reduces the data overhead even
than the original McEliece PKC when Len(r) + Len(Const) < �log2 C(n, t)�.
The study to reduce the overhead data (and simultaneously to improve the
security against related-message attacks) has been performed in [27]. While his
conversions do not provide provable security against CCA2 (since either known-
partial-plaintext attacks or reaction attacks are applicable at least), his approach
to reduce the overhead data should be appreciated.

Indistinguishability of Our Conversions. It is intuitively clear that our
conversions resist all the critical attacks in Section 3.2 since it is hard for ad-
5 They originally proposed to use symmetric encryption (instead of Gen(r)). The
conversion described here is a variant mentioned in [9].

28 Kazukuni Kobara and Hideki Imai

Encryption of m:

r := Rand

m̄ := Prep(m)

y1 := Gen(r)⊕ m̄

y2 := r ⊕ Hash(y1)

(y4||y3) := (y2||y1)

z := Conv(Hashz(r))

c := y4||EMcEliece(y3, z)

return c

Decryption of c:

y4 := MsbLen(c)−n(c)

y3 := DMcEliece(Lsbn(c))

z := Lsbn(c)⊕ y3G
′

(y2||y1) := (y4||y3)

r := y2 ⊕ Hash(y1)

m̄ := Gen(r)⊕ y1

If Conv−1(z)=Hashz(r)

return Prep−1(m̄)

Otherwise reject c

Fig. 6. Conversion β : Len(y3) = k and Len(y4) = Len(r||m̄) − k If Len(r||m̄) = k,
remove y4.

Encryption of m:

r := Rand

m̄ := Prep(m)

y1 := Gen(r)⊕ (m̄||Const)

y2 := r ⊕ Hash(y1)

(y5||y4||y3) := (y2||y1)

z := Conv(y4)

c := y5||EMcEliece(y3, z)

return c

Decryption of c:

y5 := MsbLen(c)−n(c)

y3 := DMcEliece(Lsbn(c))

z := y3G
′ ⊕ Lsbn(c)

z̄ := Conv−1(z)

y4 := Lsb�log2 C(n,t)�(z̄)

(y2||y1) := (y5||y4||y3)

r := y2 ⊕ Hash(y1)

(m̄||Const′) := y1 ⊕ Gen(r)

If Const′=Const

return Prep−1(m̄)

Otherwise reject c

Fig. 7. Conversion γ : Len(y3) = k, Len(y4) = 	log2 C(n, t)
, Len(y5) = Len(m̄) +
Len(Const)+Len(r)−Len(y4)−k. If Len(m̄)+Len(Const)+Len(r) = Len(y4)+k,
remove y5.

versaries to abuse decryption oracles because of the difficulty of generating an
appropriate ciphertext without knowing its plaintext, and to guess the input to
the original McEliece PKC in our conversions even if they know the plaintext to
our conversions.
More formally, the following theorem is true for our conversions in the random

oracle model (where Gen, Hash and Hashz are assumed to be ideal).

Theorem 1 To break the indistinguishability of encryption of our specific con-
versions in an adaptive-chosen-ciphertext scenario is polynomial equivalent to
decrypt the whole plaintext of an arbitrarily given ciphertext of the original
McEliece PKC without any help of decryption oracles and any knowledge on
the target plaintext.

Semantically Secure McEliece Public-Key Cryptosystems 29

Table 1. Comparison between Data Redundancy and Conversions

Complexity∗2 ≥ 256.3 ≥ 2101.9 ≥ 2186.2

Data Redundancy∗1 = Ciphertext Size - Plaintext Size
Conversion Conversion (n, k) (1024, 644) (2048, 1289) (4096, 2560)
Scheme Type t 38 69 128
Pointcheval’s Generic n+ Len(r) 1184 2208 4256
[24]
Fujisaki Generic n 1024 2048 4096
-Okamoto’s [9]
Our proposal Specific n − k + Len(r) 540 919 1696
α and β

Our proposal Specific n − k + Len(r) 470 648 1040
γ +Len(Const)

−	log2 C(n, t)

Original None n-k 380 759 1536
McEliece

*1: The numerical results are obtained under the setting that Len(r) = 160 and
Len(Const) = 160.
*2: The asymptotic lower bound of the expected number of iterations to invert an arbi-
trary ciphertext of the original McEliece PKC using the finding-low-weight-codeword
attack. The exact complexity is estimated in [4].

Note that, as mentioned in Section 3, it is still infeasible to decrypt the whole
plaintext of an arbitrarily given ciphertext of the original McEliece PKC with
appropriate parameters (without any help of decryption oracles and any knowl-
edge on the target plaintext).
This theorem can be proven, in the random oracle model, by showing how

to construct an algorithm which decrypts an arbitrary ciphertext of the original
McEliece PKC using an algorithm which distinguishes a ciphertext of our con-
verted versions in the adaptive-chosen-ciphertext scenario. (It is obvious that an
algorithm, which can decrypt the original McEliece PKC, can also distinguish a
ciphertext of our converted versions.) Details are described in Appendix A.

5 Conclusion

We carefully reviewed the currently known attacks to the McEliece PKC, and
then confirmed that, without any decryption oracles and any partial knowledge
on the corresponding plaintext of the challenge ciphertext, no polynomial-time
algorithm is known for inverting the McEliece PKC whose parameters are care-
fully chosen. Under the assumption that this inverting problem is hard, we in-
vestigated, in the random oracle mode, how to convert this hard problem into
the hard problem of breaking the indistinguishability of encryption with CCA2.
While some of the generic conversions are applicable to the McEliece PKC, they
have a disadvantage in data redundancy. A large amount of redundant data is

30 Kazukuni Kobara and Hideki Imai

needed for the generic conversions since the block size of the McEliece PKC is
relatively large. Our specific conversions can achieve the reduction of the re-
dundant data down to 1/3 ∼ 1/4 compared with the generic conversions for
practical parameters. This means about 3K bits can be saved for n = 4096, with
providing semantic security against CCA2.

Acknowledgments

The authors would like to thank Hung-Min Sun, Pierre Loidreau, Kwangjo Kim
and Yuliang Zheng for useful discussions and comments.

References

1. C. M. Adams and H. Meijer. “Security-Related Comments Regarding McEliece’s
Public-Key Cryptosystem”. In Proc. of CRYPTO ’87, LNCS 293, pages 224–228.
Springer–Verlag, 1988.

2. M. Bellare and P. Rogaway. “Optimal Asymmetric Encryption”. In Proc. of
EUROCRYPT ’94, LNCS 950, pages 92–111, 1995.

3. T. Berson. “Failure of the McEliece Public-Key Cryptosystem Under Message-
Resend and Related-Message Attack”. In Proc. of CRYPTO ’97, LNCS 1294,
pages 213–220. Springer–Verlag, 1997.

4. A. Canteaut and N. Sendrier. “Cryptoanalysis of the Original McEliece Cryptosys-
tem”. In Proc. of ASIACRYPT ’98, pages 187–199, 1998.

5. W. Diffie and M. Hellman. “New directions in cryptography”. IEEE Trans. IT,
22(6):644–654, 1976.

6. D. Dolve, C. Dwork, and M. Naor. “Non-Malleable Cryptography”. In Proc. of
the 23rd STOC. ACM Press, 1991.

7. T. ElGamal. “A public-key cryptosystem and a signature scheme bsed on discrete
logarithms”. In Proc. of CRYPTO ’84, pages 10–18, 1985.

8. E. Fujisaki and T. Okamoto. “How to Enhance the Security of Public-Key En-
cryption at Minimum Cost”. In Proc. of PKC’99, LNCS 1560, pages 53–68, 1999.

9. E. Fujisaki and T. Okamoto. “Secure Integration of Asymmetric and Symmetric
Encryption Schemes”. In Proc. of CRYPTO ’99, LNCS 1666, pages 535–554, 1999.

10. J. K. Gibson. “Equivalent Goppa Codes and Trapdoors to McEliece’s Public
Key Cryptosystem”. In Proc. of EUROCRYPT ’91, LNCS 547, pages 517–521.
Springer–Verlag, 1991.

11. S. Goldwasser and S. Micali. “Probabilistic encryption”. Journal of Computer and
System Sciences, pages 270–299, 1984.

12. C. Hall, I. Goldberg, and B. Schneier. “Reaction Attacks Against Several Public-
Key Cryptosystems”. In Proc. of the 2nd International Conference on Information
and Communications Security (ICICS’99), LNCS 1726, pages 2–12, 1999.

13. K. Kobara and H. Imai. “Countermeasure against Reaction Attacks (in Japanese)”.
In The 2000 Symposium on Cryptography and Information Security : A12, January
2000.

14. V.I. Korzhik and A.I. Turkin. “Cryptanalysis of McEliece’s Public-Key Cryptosys-
tem”. In Proc. of EUROCRYPT ’91, LNCS 547, pages 68–70. Springer–Verlag,
1991.

Semantically Secure McEliece Public-Key Cryptosystems 31

15. P. J. Lee and E. F. Brickell. “An Observation on the Security of McEliece’s Public-
Key Cryptosystem”. In Proc. of EUROCRYPT ’88, LNCS 330, pages 275–280.
Springer–Verlag, 1988.

16. P. Loidreau. “Strengthening McEliece Cryptosystem”. In Proc. of ASIACRYPT
2000. Springer–Verlag, 2000.

17. P. Loidreau and N. Sendrier. “Some weak keys in McEliece public-key cryptosys-
tem”. In Proc. of IEEE International Symposium on Information Theory, ISIT
’98, page 382, 1998.

18. R. J. McEliece. “A Public-Key Cryptosystem Based on Algebraic Coding Theory”.
In Deep Space Network Progress Report, 1978.

19. A. J. Menezes, P. C. Oorschot, and S. A. Vanstone. “McEliece public-key encryp-
tion”. In “Handbook of Applied Cryptography”, page 299. CRC Press, 1997.

20. D. Naccache and J. Stern. “A New Cryptosystem based on Higher Residues”. In
Proc. of the 5th CCS, pages 59–66. ACM Press, 1998.

21. T. Okamoto, K. Tanaka, and S. Uchiyama. “Quantum Public-Key Cryptosystems”.
In Proc. of CRYPTO 2000, LNCS 1880, pages 147–165. Springer–Verlag, 2000.

22. T. Okamoto and S. Uchiyama. “A New Public Key Cryptosystem as Secure as
Factoring”. In Proc. of EUROCRYPT ’98, LNCS 1403, pages 129–146, 1999.

23. P. Paillier. “Public-Key Cryptosystems Based on Discrete Logarithms Residues”.
In Proc. of EUROCRYPT ’99, LNCS 1592, pages 223–238. Springer–Verlag, 1999.

24. D. Pointcheval. “Chosen-Ciphertext Security for Any One-Way Cryptosystem”.
In Proc. of PKC 2000, LNCS 1751, pages 129–146. Springer–Verlag, 2000.

25. P.W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. SIAM Journal on Computing, 26:1484–
1509, 1997.

26. J. Stern. “A method for finding codewords of small weight”. In Proc. of Coding
Theory and Applications , LNCS 388, pages 106–113. Springer–Verlag, 1989.

27. H. M. Sun. “Improving the Security of the McEliece Public-Key Cryptosystem”.
In Proc. of ASIACRYPT ’98, pages 200–213, 1998.

28. H. M. Sun. “Further Cryptanalysis of the McEliece Public-Key Cryptosystem”.
IEEE Trans. on communication letters, 4:18–19, 2000.

29. A. Vardy. “The Intractability of Computing the Minimum Distance of a Code”.
IEEE Trans. on IT, 43:1757–1766, 1997.

A Proof of Theorem 1

A.1 Indistinguishability of Encryption

Recall a security notion called indistinguishability of encryption [11]. In this
notion, an adversary A selects two distinct plaintexts m0 and m1 of the same
length in the find stage, and then, in the guess stage, A is given c which is the
encryption of mb where b is either 0 or 1 with the probability of 1/2. Then A
tries to guess b. The advantage of A is defined by 2Pr(Win)− 1 where Pr(Win)
denotes the expected probability of A guessing b correctly. If A has a decryption
oracle D (which decrypts any other ciphertexts than the target ciphertext c),
it is called that this experiment is in the adaptive-chosen-ciphertext scenario.
Otherwise, if A does not have it, it is called that this experiment is in the
adaptive-chosen-plaintext scenario.

32 Kazukuni Kobara and Hideki Imai

A.2 Random Oracle

A random oracle is an ideal hash or an ideal generator which returns truly
random numbers distributed uniformly over the output region for a new query,
but it returns the same value for the same query. On such random oracles, the
following lemma is true.

Lemma 1 Suppose that f is a random oracle. Then it is impossible to get any
significant information on f(x) without asking x to the oracle, even if one knows
all the other outputs of f except one corresponding to x.

It is obvious that Lemma 1 is true since the output value of f is truly random.

A.3 Adaptive-Chosen-Ciphertext Security

The proof of Theorem 1 for the conversion α is given by showing Lemma 3 is
true. Before we show it, we prove Lemma 2 first.

Lemma 2 (Adaptive-Chosen-Plaintext Security) Suppose that there ex-
ists, for any Hashz and any Gen, an algorithm A which accepts m0, m1 and c
of conversion α where c is the ciphertext of mb and b ∈ {0, 1}, asks at most qG

queries to Gen, asks at most qH queries to Hashz, runs in at most t steps and
guesses b with advantage of ε. Then one can design an algorithm B which accepts
a ciphertext c̄ of the original McEliece PKC, runs in t′ steps and decrypts it with
probability ε′ where

ε′ ≥ ε − qH

2Len(r)+1 ,

t′ = t+ Poly(n, qG, qH)

and Poly(n, qG, qH) denotes a polynomial of n, qG and qH .

Proof.
The algorithm B can be constructed as follows. First the algorithm B simu-

lates both Gen and Hashz referred by the algorithm A. From the assumption
of A in Lemma 2, A must be able to distinguish b with the advantage of ε for
any Gen and any Hashz as long as the algorithm B simulates them correctly.
Then, B chooses b, r and y2 at random, and then defines both Hashz and Gen
so that the ciphertext of (r||mb) should be (c̄||y2) where c̄ is a ciphertext of the
original McEliece PKC which B wants to decrypt. That is,

Gen(z̄) def= (r||mb)⊕ (y1||y2) (10)

Hashz(r||mb)
def= Conv−1(z) = z̄. (11)

For the other queries than z̄ to Gen and (r||mb) to Hashz, they return random
values, respectively. Even for these Gen and Hashz, A must be able to distin-
guish b with the advantage of ε from the assumption in Lemma 2 as long as B
simulates them correctly.6

6 If A distinguishes b only for certain combinations of Hashz and Gen, then the fault
must be in either Gen or Hashz or in both used in the combinations, and therefore

Semantically Secure McEliece Public-Key Cryptosystems 33

Then, can B simulate them correctly for any queries? The answer is no since B
does not know z̄, and therefore B cannot simulate Hashz correctly when (r||mb)
is asked to Hashz. We define the following two events AskG and AskH.

Definition 1 Let AskG denote the event that z̄ is asked to Gen among the qG

queries to Gen and this query is performed before (r||mb) is asked to Hashz. Let
AskH denote the event that (r||mb) is asked to Hashz among the qH queries to
Hashz and this query is performed before z̄ is asked to Gen.

Since Pr(AskG ∧AskH) = 0 in this definition, the following holds

Pr(AskG ∨AskH) = Pr(AskG) + Pr(AskH). (12)

Next, we estimate the upper-limit of Pr(Win), the probability of A guessing
b correctly. From Lemma 1, without asking either z̄ to Gen or asking (r||mb) to
hashz, one cannot get any information on the connectivity between (z, y1||y2)
and (r||mb), and therefore cannot guess b with a significant probability after the
event (¬AskG∧¬AskH). After the other event, i.e. after the event (AskG∨AskH),
A might guess b with more significant probability. By assuming this probability
to be 1, the upper-limit of Pr(Win) is obtained as follows:

Pr(Win) ≤ Pr(AskG ∨AskH) + (1− Pr(AskG ∨AskH))
2

≤ Pr(AskG ∨AskH) + 1
2

. (13)

From the definition of advantage, i.e. Pr(Win) = (ε + 1)/2, the following rela-
tionship holds

Pr(AskG ∨AskH) ≥ ε. (14)

Since both r and b are chosen at random by B, A cannot know them without
asking z̄ to Gen or asking (r||mb) to Hashz. Thus the probability of one query
to Hashz accidentally being (r||mb) is 1/2Len(r)+1, and then that of at most qH

queries is given by

Pr(AskH) ≤ 1−
(
1− 1

2Len(r)+1

)qH

≤ qH

2Len(r)+1 . (15)

The algorithm B can simulate both Gen and Hashz correctly unless the
event AskH happens. And then, after the event AskG, B can recover the whole
plaintext of the target ciphertext c̄ of the original McEliece PKC using z̄ asked
to B. Thus, after the event (AskG ∧ ¬AskH), B can recover it. The lower-limit
of this probability is given by

this fault can be easily removed just avoiding using the combinations. Otherwise,
i.e. if A distinguishes b for any combinations of Hashz and Gen, the fault must be
in the conversion structure.

34 Kazukuni Kobara and Hideki Imai

Pr(AskG ∧ ¬AskH) = Pr(AskG)
= Pr(AskG ∨AskH)− Pr(AskH)

≥ ε − qH

2Len(r)+1 (16)

from (12), (14) and (15).
The number of steps of B is at most t + (TDec + TG) · qG + TH · qH where

TDec is the number of steps for decrypting the original McEliece PKC using a
new query to Gen as z̄, TG is both for checking whether a query to Gen is new
or not and for returning the corresponding value, and TH is both for checking
whether a query to Hashz is new or not and for returning the corresponding
value. Since these parameters, TDec, TG and TH can be written in a polynomial
of n, qG and qH , the total number of steps of B is also written in a a polynomial
of them.

✷

Lemma 3 (Adaptive-Chosen-Ciphertext Security) Suppose that there ex-
ists, for any Hashz and Gen, an algorithm A which accepts m0, m1 and c of
conversion α where c is the ciphertext of mb and b ∈ {0, 1}, asks at most qG

queries to Gen, asks at most qH queries to Hashz, asks at most qD queries to a
decryption oracle D, runs in at most t steps and guesses b with advantage of ε.
Then one can design an algorithm B which accepts a ciphertext c̄ of the original
McEliece PKC, runs in t′ steps and decrypts it with probability ε′ where

ε′ ≥ ε − qH

2Len(r)+1 − qD

C(n, t)
,

t′ = t+ Poly(n, qG, qH , qD)

and Poly(n, qG, qH , qD) denotes a polynomial of n, qG, qH and qD.

Proof.
The algorithm B can be constructed as follows. First, the algorithm B simu-

lates random oracles Gen, Hashz and the decryption oracle D referred by A. As
long as B simulates them correctly, A must be able to distinguish the given ci-
phertext with advantage of ε. How to simulate both Gen and Hashz is the same
as in the proof of Lemma 2. The decryption oracle D can be simulated using
the following plaintext-extractor [2]. The plaintext-extractor accepts a cipher-
text, e.g. (c̄′||y′

2) where c̄′ denotes a ciphertext of the original McEliece PKC,
and then outputs either the corresponding plaintext of (c̄′||y′

2), or reject it as an
inappropriate ciphertext.
Let gi and Gi denote the i-th pair of query and its answer for Gen. And then

let hj and Hj denote the j-th pair of query and its answer for Hashz. From
the queries and the answers obtained while simulating Gen and Hashz, the
plaintext-extractor finds a pair of (gi, Gi) and (hj , Hj) satisfying Conv(gi) = z′,
Conv(Hj) = z′ and Gi ⊕ (y′

1||y′
2) = hj where y′

1 and z′ denote the plaintext
and the error vector of c̄′, respectively. If found, B outputs LsbLen(m′)(hi) as
the plaintext of (c̄′||y′

2) where Len(m′) = Len(c̄′) + Len(y′
2)− n+ k − Len(r′).

Otherwise B rejects it as an inappropriate ciphertext.

Semantically Secure McEliece Public-Key Cryptosystems 35

The plaintext-extractor can simulate D unless A asks an appropriate ci-
phertext to D without asking both z̄′ and Gi ⊕ (y′

1||y′
2) to Gen and Hashz,

respectively. In this case, the plaintext-extractor rejects the appropriate cipher-
text, and therefore does not simulate D correctly. However it is a small chance
that A could generate an appropriate ciphertext without asking them. Since the
definition of appropriate is to satisfy

Hashz(Gen(z̄′)⊕ (y′
1||y′

2)) = z̄′, (17)

and it is impossible for A to know whether (17) is true or not without asking z̄′
to Gen and asking Gen(z̄′)⊕ (y′

1||y′
2) to Hashz, respectively, from Lemma 1.

We define AskD as the following event that at least one query out of at
most qD queries to D accidentally becomes an appropriate ciphertext before the
queries used in (17) are asked. Since the probability of one query to D being
accidentally an appropriate ciphertext is 1/C(n, t), the upper-limit of Pr(AskD)
is given by

Pr(AskD) ≤ 1−
(
1− 1

C(n, t)

)qD

≤ qD

C(n, t)
. (18)

Unless either AskD or AskH happens, B can correctly simulate the oracles
referred by A. In addition, when AskG happens, B can recover the whole plain-
text of c̄, the ciphertext of the original McEliece PKC. The lower-limit of this
probability Pr(AskG ∧ ¬AskD ∧ ¬AskH) is given by

Pr(AskG ∧ ¬AskH ∧ ¬AskD)
= Pr(AskG ∧ ¬AskH)− Pr(AskG ∧ ¬AskH ∧AskD)
≥ Pr(AskG ∧ ¬AskH)− Pr(AskD)

≥ ε − qH

2Len(r)+1 − qD

C(n, t)
. (19)

The number of steps of B is at most t+ (TDec + TG) · qG + TH · qH + TD · qD

where TDec, TG and TH are the same as the parameters in the proof of Lemma
2. The number of steps TD is for the knowledge-extractor to verify whether (17)
holds and then to return the result. Since these parameters, TDec, TG, TH and
TD can be written in a polynomial of n, qG, qH and qD, the total number of
steps of B is also written in a polynomial of them.

✷

Using the similar discussion to the conversion α, the lower limit of ε′s for
conversions β and γ are given by

ε′ ≥ ε − (qG + qHz + qD)
2Len(r) (20)

and

ε′ ≥ ε − qG

2Len(r) − qD

2Len(Const) , (21)

respectively.

	Introduction
	McEliece Public-Key Cryptosystem
	Attacks to McEliece PKC
	Non-critical Attacks
	Critical Attacks

	Conversions for McEliece PKC
	Notations
	Insufficient Conversions for McEliece PKC
	Generic Conversions Being Applicable to McEliece PKC
	Our Specific Conversions

	Conclusion
	Proof of Theorem 1
	Indistinguishability of Encryption
	Random Oracle
	Adaptive-Chosen-Ciphertext Security

