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1 Université de Limoges, XLIM-DMI,
123, Av. Albert Thomas

87060 Limoges Cedex, France
{pierre-louis.cayrel,philippe.gaborit}@xlim.fr

2 France Télécom Recherche et Développement
42, rue des Coutures
14066 Caen, France

marc.girault@orange-ftgroup.com

Abstract. In this paper, we propose a new identity-based identification
(and signature) scheme based on error-correcting codes. This scheme is
up to date the first identity-based scheme not based on number theory.
The scheme combines two well known code-based schemes: the signa-
ture scheme of Courtois, Finiasz and Sendrier and the zero-knowledge
authentication scheme of Stern (which may also be used for signature).
The scheme inherits from the characteristics of the previous schemes: it
has a large public key of order 1Mo and necessitates a certain number of
exchange rounds. The scheme can also work in signature but leads to a
very large signature of size 1Mo.

Keywords : Identity based scheme, Error-Correcting codes, Stern pro-
tocol, Niederreiter scheme, CFS scheme.

1 Introduction

The most critical point of classical public key cryptography (RSA, El Gamal...)
is in the management of the authenticity of the public key. In fact, if Alice man-
ages to take Bob’s identity by cheating her own public key as Bob’s one, she
would be able to decipher all messages sent to Bob and to sign any message
using the stolen identity.

In 1984, Shamir introduced the concept of IDentity-based Public Key Cryp-
tography ID-PKC [9] in order to simplify the management and the authentication
of the public key, which, time passing by, had become more and more complex.

In the ID-PKC scheme of Shamir, the public key of an user is undeniably
linked to his identity on the network (user-id): it can be a concatenation of
any publicly known information: his name, his e-mail, his phone number, etc ...
Hence it is not necessary to verify a certificate for the public key or to contact



a data base to obtain it. At first glance it seems simple but producing private
keys becomes more complex. And since a private user can not derivate his own
private key by himself, it is necessary to introduce trusted third party which
derivate the private key from the public key and sends it to the user (at least it
has to be done once for each user).

In [9] Shamir calls this trusted third party the Key Generation Center (KGC).
The KGC is the owner of a secret, namely the master key. After a protocol of
authentication of the identity of the user, the KGC computes his private key
from the master key, the user-id and a trapdoor function.

In his paper Shamir proposed systems based on RSA or Discrete Logarithm
but which did not fulfilled the previous requirements. The first efficient identity-
based cryptosystem was proposed in 2001 by Boneh and Franklin [2]. This system
is based on Weil pairing and elliptic curves. The same year, Cocks [4] published
a system based on quadratic residuosity but the system has a very large message
expansion which makes it unefficient in practice.

Following the paper by Boneh and Franklin, researches on ID-PKI have made
great progresses and lots of schemes have been published all of them based on
elliptic curves and bilinear pairings, such as identity-based encryption (IBE)
schemes [1, 6], identity-based key agreement schemes [10], identity-based signa-
ture (IBS) or identity-based identification (IBI) schemes [7, 17, 18] (see [3] for
more references).In 2004 Bellare, Neven and Namprempre proposed in [3] a gen-
eral framework to derivate IBI or IBS from signature or authentication scheme,
and they applied it to known schemes, but they only considered number theory
based schemes.

In this paper we consider a code-based scheme, which does not rely on pre-
viously studied schemes (in particular those of [3]).

Code-based cryptography was introduced at the same time than RSA by
MacEliece [14], later a variation on the scheme was proposed by Niederreiter in
1986 [8]. The idea of using error-correcting codes for identification purposes is
due to Harari, followed by Stern (first protocol) and Girault. But Harari and
Girault protocols were subsequently broken, while Stern’s one was five-pass and
unpractical. At Crypto’93, Stern proposed a new scheme [16], which is still today
the reference in this area.

For a long time no code-based signature scheme was known, eventually the
first (non broken) code-based cryptosystem was proposed by Courtois, Finiasz
and Sendrier [5] (CFS) in 2001. At the difference of RSA, the MacELiece or
Niederreiter schemes do not rely on purely bijective problems like the modular
exponentiation. The basic idea of the CFS signature scheme is to choose pa-
rameters such that such an inversion for the Niederreiter scheme is practically
possible. This is done at the cost of obtaining rather large parameters (except
for the length of the signature) when comparing to other signature schemes but
at least it exists!

In this paper we combine the previous signature scheme and the authentica-
tion scheme by Stern to obtain an IBI and an IBS scheme.
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The basic idea of our scheme is to start from a Niederreiter-like problem
which can be inverted like in the CFS scheme. This permits to associate a secret
to a random (public) value obtained from the identity of the user. The secret
and public values are then used for the Stern zero-knowledge authentication (or
signature) scheme.

The paper is organized as follows: in section 2 we recall basic facts on code-
based cryptography, in section 3, we recall the cryptosystem of Niederreiter, the
signature scheme of Courtois, Finiasz and Sendrier and the protocol of Stern
before developping our new protocol in section 4. At last in section 5 we give
parameters and security analysis of our scheme and conclude in section 6.

2 Code-based cryptography

In this section we recall basic facts about code-based cryptography. We refer
to the work of Nicolas Sendrier in [15], for a more general context on these
problems.

2.1 A hard problem

Every public key cryptosystem has to rely on a hard problem. In the case of
coding theory, the main problem used is:

Problem: SYNDROME DECODING (SD)
Instance: An m×n matrix H over Fq, a target vector s ∈ Fm

q and an integer
w > 0.

Question: Is there a vector x ∈ Fn
q of weight ≤ w, such that HxT = sT ?

This problem was proven to be NP-complete in [12].

2.2 Usual attacks

In term of code-based cryptography there are two kinds of attacks: attacks
which try to decode directly a message or structural attacks which try to recover
the structure of the code.

Information set decoding The most efficient algorithms in our case are based
on the information set decoding. A first analysis was done by MacEliece, then
by Lee and in Brickell and also by Stern and Leon and at last by Canteaut and
Chabaud (see [13] for all references).

Consider a [n, k, 2t+1] binary code, if one uses information set decoding, one
chooses a random set of k columns, an error is decodable when its support does
not meet the k random columns. The probability for an error to be decodable

(see [15] for more details) is then Pdec = (n−k
t )

(n
t)

, which leads with the usual

binomial approximation to a probability:

Pdec = O(1).2−nH2(t/n)−(1−k)H2(t/(n−k)),
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where H2(x) = −xlog2(x)− (1− x)log2(1− x).
Then the estimated work factor WF to find a word of weight t can be estimated
as follow:

WF =
P (k)
Pdec

,

where P (k) corresponds to the cost of a Gaussian elimination, P (k) can be first
thought as a cost in O(k3), in the best improvement of [4] one can consider
P (k) linear or even less. For the parameters we are envisaging it is reasonable to
consider them linear to fit the practical results of [4]. This algorithm is currently
the best known.

Structural attacks Structural attacks aim at recovering the structure of the
permuted code, ie: recovering the permutation from the code and its permuted.
The problem behind is the equivalence of codes, this problem was considered by
Sendrier for which he gave a nice algorithm: the Support Splitting Algorithm
[15]. In our context it is not relevant since we will be using Goppa codes, in
which case his algorithm can not be applied since one knows only the permuted
code and not the original code (which are too many).

3 CFS signature scheme and Stern identification protocol

Before decribing the CFS scheme of Courtois,Finiasz and Sendrier, and the
Stern identification protocol, we first recall the Niederreiter scheme:

3.1 Niederreiter scheme

Let C be a q-ary linear code t-correcting of length n and of dimension k. Let
H a matrix of parity of C. We will use an H̃ matrix such that :

H̃ = V HP

{
V is invertible
P is a permutation matrix

H̃ will be public and its decomposition will be secret, knowing a decoding
by syndromes algorithm useful in C. To be clearer, we recall the various sizes of
matrices. M is n× n− k, V is n− k × n− k, H is n× n− k, P is n× n.

Encryption For a chosen cleartext x in the Eq,n,t space of Fn
q words which

Hamming weight t, y is the cryptogramm corresponding to x if and only if :

y = H̃xT .

4



Decryption For y = H̃xT , the knowledge of the secrets allows :

1. to compute V −1y (= HPxT );
2. to find PxT from V −1y thanks to the decoding by syndromes algorithm used

in C;
3. to find x applying P−1 to PxT .

The decoding by syndromes algorithm can be, for instance, in the case of Goppa’s
codes, Patterson’s algorithm (see part 5.1).

3.2 CFS signature scheme

As we already mentionned at the difference of the RSA scheme which is
naturally invertible, the MacEliece or the Niederreiter schemes are not invertible,
ie, if one starts from a random element y of Fn

2 and a code C[n, k, d] that we
are able to decode up to d/2, it is almost sure that we won’t be able to decode
y into a codeword of C. This comes from the fact that the density of the whole
space which is decodable is very small. The idea of the CFS scheme is to fix
parameters [n, k, d] such that the density of decodable codewords is reasonable
and pick up random elements until one is able to decode it.

More precisely, given M a message to sign and h a hash function of {0, 1}n−k.

We try to find a way to build s ∈ Fn
2 of given weight t such that h(M) = H̃sT .

For D() a decoding algorithm, the algorithm works as follows:

1. i← 0
2. while h(M ⊕ i) is decodable do i← i + 1
3. compute s = D(h(M ⊕ i))

Fig. 1. The CFS signature scheme

We get at the end an {s, j} couple, such that h(M ⊕ j) = H̃sT . Let us notice
that we can suppose that s has weight t = [d/2].

3.3 Stern authentication (or identification) protocol

This scheme was developed in 1993 (see [11]) to aim at providing zero-
knowledge authentication scheme, not based on number theory problems. Given
H̃ a matrix of size (n− k)×n over F2. This matrix is public. Each user receives
a secret key s of n bits and of weight t. A user’s public identifier is obtained
from :i = H̃sT . It is calculated once in the lifetime of H̃. It can thus be used by
several future identifications. Let us suppose that A wants to prove to B that
he is indeed the person corresponding to the public identifier iA. A has his own
private key sA s.t. iA = H̃sT

A. Our two protagonists can then follow the protocol:
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1. A chooses randomly any word y of n bits and a permutation σ of
{1, 2, . . . , n}. Then A sends to B : c1, c2, c3 such that :

c1 =< σ, eHyT >; c2 =< y.σ >; c3 =< (y ⊕ s).σ >

where arg1, arg2 notes the concatenation of arg1 and arg2, < arg1 > the
action of a hash function on arg1 and arg.σ is the image of arg by σ.

2. B sends to A, b ∈ {0, 1, 2}.
3. Three possibilities:

– if b = 0 : A reveals y and σ.
– if b = 1 : A reveals (y ⊕ s) and σ.
– if b = 2 : A reveals y.σ and s.σ.

4. Three possibilities:
– if b = 0 : B verifies that the c1, c2 received at the second round have

really been honestly calculated.
– if b = 1 : B verifies that the c1, c3 received at the second round have

really been honestly calculated. For c1 we can note that eHyT derives
directly from eH(y ⊕ s)T by :

eHyT = eH(y ⊕ s)T ⊕ i = eH(y ⊕ s)T ⊕ eHsT = eHyT

– if b = 2 : B verifies that the c2, c3 received at the second round have
really been honestly calculated, and that the weight of s.σ is really
equal to t.

5. Reiterate the steps 1,2,3,4 while the expected security is not reached.

Fig. 2. Stern’s protocol

The protocol has to be iterated long enough to make the k numbers of rounds
(2/3)k close to the level of confidence wanted, where (2/3) is the probability that
a dishonest person cheats during a round. Apart from the number of turns, the
security of this scheme relies on the difficulty to invert the function :

x 7→ H̃xT .

4 An identity-based identification protocol : the
Stern-Niederreiter protocol

Given C a q-ary linear code of length n and of dimension k. Let H be a
matrix of parity of C. Given H̃ = V HP with V invertible and P a matrix of
permutation. Let h a hash function with values in {0, 1}n−k. Let idA Alice’s
identity, idA can be compute by everyone. Similarly, H̃ is public. The decompo-
sition of H̃ is, on the contrary, a secret of the authority and not of Alice.
We shall describe an identity-based authentication method : Alice the prover is
identifying herself to Bob the verifier.

Preliminary : key deliverance Alice has to authentify herself in a classic way,
to get the private key which will then allow her to authentify herself to a third
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person as Bob. For that purpose, we use variation on identity. Let us admit that
we know Bob’s identity idB . Given h a hash function with values in {0, 1}n−k.

We search a way to find s ∈ Eq,n,t such that h(idB) = H̃sT .
The main point is to decode h(idB). The main problem is that h(idB) is not
in principle in the arrival space of x → H̃xT . That is to say that h(idB) is
not in principle in the space of decodable elements of Fn

2 . That problem can be
solved thanks to the following algorithm. Given D() a decoding algorithm for
the hidden code: We get at the end a couple {s, j}, such that h(idB⊕ j) = H̃sT .

1. i← 0
2. while h(idB ⊕ i) is not decodable do i← i + 1
3. compute s = D(h(idB ⊕ i))

Fig. 3. key deliverance

We can note that we have necessarily s of weight t.

Identification by Bob. We use a slight derivation of Stern’s protocol (section
3.3 figure 3.3). We suppose in that protocol that A obtained a couple {s, j}
verifying : h(idA ⊕ j) = H̃sT . h(idA ⊕ j) is A’s public key. The new protocol is
based on Stern’s protocol but with two changes, first A sends j to B at the step
one and second, we change the step 4 with : The knowledge of j doesn’t permit

4bis. Three possibilities:

– if b = 0 : Bob verifies that the c1, c2 received at the second round have
really been honestly computed.

– if b = 1 : Bob verifies that the c1, c3 received at the second round have re-
ally been honestly computed. For c1 we can note that eHyT derives directly
from eH(y ⊕ s)T by :

eHyT = eH(y ⊕ s)T ⊕ h(idA ⊕ j) = eH(y ⊕ s)T ⊕ eHsT

– if b = 2 : Bob verifies that the c2, c3 received at the second round have
really been honestly commputed, and that the weight of s.σ is really equal
to t.

Fig. 4. Authentication by Bob

to find s such that h(idA ⊕ j) = H̃sT . The security of this system is the same
as the security of Stern’s one (see section 2).
Remark: Identity-based signature scheme: it is possible to derive a signa-
ture scheme from the zero-knowledge authentication scheme of Stern by classical
constructionc. Hence it permits to derive an IBS scheme.
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5 Security Analysis

We shall here deal with the security of classical protocol as their applicability
and finally end with our protocol.

Remind that in the case of Niederreiter’s cryptosystem, its security relies on
the supposed difficulty of the decoding of a linear code (see section 2).

5.1 Parameters and security of the scheme

The protocol has two parts: in the first part one inverts the syndrome decod-
ing problem for a matrix H̃ in order to construct a private key for the prover and
in second part one applies Stern authentication protocol with the same matrix
H̃. This shows that the overall parameters of the scheme are equivalent to the
security of the CFS scheme, since the security of the Stern scheme with the same
matrix parameters is implicitly included in the signature scheme.

In particular the scheme has to respect two imperative conditions:

1. make the computation of {s, j} (defined in advance) difficult without the
knowledge of the description of H,

2. make the number of trials to determine the correct j not too important in
order to reduce the cost of the computation of s.

Following [5] the Goppa [2m, 2m−tm, t] codes are a large class of codes which
are compatible with condition 2. Indeed, for such a code, the proportion of the
decodable syndromes is about 1/t! (which is a relatively good proportion). We
also have to choose a relatively small t.

The {s, j} production process will thus be iterated, about t! times before
finding the correct j. But each iteration forces to compute D(h(idA ⊕ j)).
The decoding of the Goppa codes consists of :

– computing a syndrome : t2m2/2 binary operations;
– computing a localisator polynomial : 6t2m binary operations;
– computing its roots : 2t2m2 binary operations.

We thus get a total cost for the computation of Alice’s private key of about :

t!t2m2(1/2 + 2 + 6/m) binary operations

The cost of an attack by decoding thanks to the split syndrome decoding is
estimated to :

2tm(1/2+o(1)).

The choice of parameters will have to be pertinent enough to conciliate cost and
security. Althought less crippling, some sizes have also to remain reasonable :
the length of {s, j}, the cost of the verification and the size of H̃.

The size of H̃ is (n− k)× n, that is for a Goppa code : 2mtm. The following
figure sums up the different parameters :
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signature cost t!t2m2(1/2 + 2 + 6/m)
signature size tm

verification cost t2m
attack cost 2tm(1/2+o(1))

size of H̃ 2mtm

Following [5] we can for example take t = 9 and m = 16. The cost of the
signature stays then relatively reasonable for a security of about 280. The others
sizes remain in that context very acceptable.

5.2 Practical values

The big difference when using the parameters associated to the CFS scheme
is that the code used is very long, 216 against 29 for the basic Stern scheme, it
dramatically develops communication costs.

In the next table we sum up for the parameters m = 16, t = 9 the general
paramaters of the IBI and IBS schemes.

public key private key matrix size communication cost key generation
tm tm 2mtm ≈ 2m ×#rounds

144 144 1 Mo 500 Ko (58 rounds) 1 s

Practical values for the IBI scheme: m = 16, t = 9

public key private key matrix size signature length key generation
tm tm 2mtm ≈ 2m × 150
144 144 1 Mo 1 Mo 1 s

Practical values for the IBS scheme: m = 16, t = 9

Reduction of the size of the public matrix: At the difference of a pure
signature scheme in which one wants to be able to sign fast, in our scheme the
signature is only computed once for sending it to the prover, hence the time for
signing may be judged less determinant and a longer time of signature may be
accepted at the cost of reducing (a little) the parameters of the public matrix
(we shall precise it in a longer version of our paper).

6 Conclusion

In this paper we presented an IBI and a related IBS scheme based on error-
correcting code. This scheme is the first non number theory based identity based
scheme. The scheme combines two well known schemes and inherits from bad
properties of these schemes: the public data is large, the communication cost for
the IBI scheme is large and the signature length for the IBS scheme is also very
large but besides these weaknesses our scheme presents the first alternative to
number theory for ID-based cryptography and may open a new area of research.
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