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Abstract— In this note we reconsider the code-based pseudo-
random generator proposed by Fischer and Stern. This generator
is proven as secure as the syndrome decoding problem but has
two main drawbacks: it is slow (3000 bits/s) and a large size of
memory is needed (88 kiloBytes). We propose a variation on the
scheme which avoid them: the use of regular words speeds the
system up and the use of quasi-cyclic codes allows a decrease
of the memory requirements. We eventually obtain a generator
as fast as AES in counter mode using only about 8000 bits of
memory. We also give a more precise security reduction.

I. INTRODUCTION

Pseudo-random generator are very important in cryptogra-
phy and can be used for one-time-pad cryptosystems. One
of the main desired figure of such pseudo-random generators
(PRNG) is to be fast, at least as fast as the best block cipher
scheme since it is possible by using the OFB mode to turn
any block into a stream cipher.

Meanwhile another kind of property is also interesting for
stream ciphers: proven stream ciphers, i.e. PRNG proven
as secure as particular difficult problems. This problem has
received much attention beginning in the 80’s and a series
of paper concluded that a necessary and sufficient condition
for the existence of a PRNG is the existence of one way
function [15]. One way functions are functions which are easy
to compute but hard to invert.

The first construction of provably secure stream cipher is
due to Blum and Micali [6] which relates the existence of
a PRNG to modular exponentiation, later Blum, Blum and
Shoub [5] proposed a system based on quadratic residuosity
and Alexi,Chor, Goldreich and Schnorr proposed a system
based on the RSA assumption. All the previous PRNG are
related to number theory problems, the first PRNG related
to a non number theoretic problem (the subset problem) was
proposed by Impagliazzo and Naor [16], this construction was
followed by a construction by Fischer-Stern based on syn-
drome decoding problem [16]. At last very recently Berbain,
Gilbert and Patarin [3] proposed the system QUAD based on
multivariate equations (MQ problem).

In practice all PRNG based on number theory are rather
slow with a speed not exceeding a few thousand bits per
second (a hundred time slower than AES). The fastest system
with a security reduction is the recent QUAD system which has

a speed of a few Megabits per second, but has a memory usage
of 4 Mb. Even if this size is not an issue for today computers
it may become one for low cost devices like smartcards or
RFID.

The PRNG proposed by Fischer and Stern based on syn-
drome decoding seems more interesting at first sight since
it uses only linear equations but with a weight constraint.
Unfortunately this system has two main drawbacks: first,
dealing with the set of words of given weight necessitates
the use of a quadratic algorithm which slows the whole
process considerably, second the matrix needed to evaluate
the syndrome is very large. Eventually these drawbacks make
it as slow as number theoretic based PRNG.

A solution to the first drawback is the use of regular words.
Regular words were introduced by Augot, Finiasz and Sendrier
in a hash function context [1], they are words of given weight
w which have a fixed number of 1’s in each sequenced subset
of columns of fixed size. This set of word does not describe
the whole set of words of given weight but is very easy to
generate and permits to avoid the use of a quadratic algorithm
to generate words of given weight. The second drawback is
avoided by the use quasi-cyclic codes, it was recently showed
by Gaborit and Zemor [12] that in terms of syndrome these
codes behaved like random codes with a small constraint on
the length.

Hence in this note we reconsider the Fischer-Stern PRNG
by modifying several points: first we use regular words for
words of higher weights that what consider Fischer and Stern,
it permits both to generate them easily and to obtain a better
rate, second we use quasi-cyclic codes. Eventually we obtain
a PRNG as fast as AES (ie: hundred times faster than QUAD)
with a memory requirement of only 8000 bits.

In term of security, following the proof of the QUAD and
the Fischer-Stern system we give a reduction proof for our
system and associated parameters.

The paper is organized as follows: Section 2 recalls basic
facts and definition of code-based cryptography, Section 3
gives a description of our system, Section 4 deals with
the accurate security proof and at last Section 5 proposes
parameters, peformances and considers practical security of
our scheme.



II. CODE-BASED CRYPTOGRAPHY

In this section we recall basic facts about code-based
cryptography. We refer to the work of Nicolas Sendrier in
[21] for a more general context on these problems and to [19]
for a general context on coding theory.

Though most of the statements below hold for larger al-
phabets, we will consider binary linear codes of length n and
dimension k, we will denote r = n− k the codimension.

A. Syndrome decoding

The fundamental primitive we will consider is the syndrome
mapping

f : Fn
2 → Fr

2

x 7→ xHT

defined for any r × n matrix (r < n). When the defining
set is restricted to the words of Hamming weight less than
some w > 0 this linear mapping becomes one-way (in the
cryptographic sense). Inverting f for an upper bounded weight
is strongly related to decoding in the binary linear code of
parity check matrix H . In fact decoding in a linear code is at
least as hard as Syndrome Decoding:

Problem 1 (Syndrome Decoding - SD):
Instance: A binary r×n matrix H , a word s of Fr

2 and an
integer w > 0.

Question: Is there a word x in Fn
2 of weight ≤ w such that

xHT = s?
The problem SD is NP-complete [4]. Indeed, this is only a
worst-case complexity result. But, though no formal reduction
is known [17], [14], decoding in a random linear code is
believed to be hard in the average case.

In practice, decoding a general linear code has recieved a lot
attention, both in cryptology and in coding theory (see [2] for
a state of the art). All known algorithms have an exponential
complexity. Several cryptosystems based on coding theory,
including the famous McEliece encryption scheme [18], have
been proposed ([21] for references).

B. Best known decoding attack

As far as cryptography is concerned, the best known decod-
ing technique is “information set decoding”. Many papers have
been published on this topic, leading to Canteaut-Chabaud
algorithm [7] which is the best known cryptanalysis so far.

Computing the work factor of the Canteaut-Chabaud algo-
rithm requires the computation of the stationnary distribution
of (several) Markov processes. Thus it is not given by a
closed formula, however, for reasonnable parameters, decoding
t errors in a binary linear code of length n and codimension
r, requires about (n/r)t = 2t log2(n/r) binary operations (up
to a polynomial factor). Table I gives the binary work factor
(WF ) of Canteaut-Chabaud algorithm for various parameters.

n n− k t log2 WF
1024 500 50 62
2048 330 30 87
8192 256 32 152
8192 512 32 131

TABLE I
COST FOR FINDING A WORD OF WEIGHT t IN A BINARY (n, k) CODE

C. Regular words

Given a binary r × n matrix H , computing eHT for a
word e of length n and weight t is extremely fast, as it
consists in xoring (adding mod 2) t columns of H . One
flaw of this mapping lies in the fact that most, if not all,
information systems deal with binary data. Somehow we need
to transform binary strings into words of constant weight
and length. Solutions to that problem exist [10], [22], but
are significantly more expensive than the syndrome mapping
alone.

Regular words are much more convenient in an algorithmic
point of view. The drawback is in the security reduction, which
relies on a much less studied problem.

1) Definition: We consider binary words of length n and
we divide the coordinates in t blocs of n/t positions. A binary
regular word of length n and weigth t ((n, t)-regular word)
has exactly one non zero coordinate in each of those blocs.

There are exactly (n/t)t such words, which is less than
(
n
t

)
the number of words of length n and weight t. If n and t are
chosen such that n/t = 2`, then there is an easy mapping

θn,t : F`t
2 → Fn

2 (1)

such that the image of θn,t is exactly the set of (n, t)-regular
words.

2) Security: The problem corresponding to SD restricted to
regular words is still NP-complete [1]:

Problem 2 (Regular Syndrome Decoding - RSD):
Instance: An integer w > 0, a sequence of w binary r× n

matrices Hi, 1 ≤ i ≤ w, and a word s of Fr
2.

Question: Is there a set of w columns, one in each Hi,
adding to s?

Regular Syndrome Decoding is probably also difficult in
the average case, though we do not have decades of research
to assess that claim. The best known attack is the generalized
birthday attack [23] as demonstrated in [9] for the cryptanal-
ysis of the syndrome-based hash function. However, in the
context of this paper, the instances we consider have only one
solution and this attack becomes a “simple” birthday attack of
complexity n2(n−k)/2 for decoding t errors in a binary (n, k)
code (note that this cost is independant of t).

Notice moreover that there is a reduction from RSD to SD.
A black box which decodes regular errors of weight t can
be used to correct random errors of weight t in the same
code. The coordinates are permuted until the error pattern
becomes regular. The number of call to the black box is the
ratio between the number of words of weight t and the number



of regular words, that is
(
n
t

)
(t/n)t ≈ tt/t! ≈

√
t/2π exp(t).

So, decoding a regular error cannot be more than about exp(t)
easier than decoding a random error of same weight. This
reduction is probably not tight.

Now, in practice, besides this theoretical reduction, the best
known attack remains the usual attack for searching for a word
of a given weight. Notice that because of the special form of
the regular word and since for our case on the average there
exists only one such codeword, the work factor still remains
approximatively (n/r)t even though t lies beyond the Gilbert-
Varshamov bound.

D. Quasi-Cyclic random codes

In this part we recall basic facts about quasi-cyclic (QC)
codes.

Definition 1: A code of length n is called quasi-cyclic of
order s, for n a multiple of s if every cyclic shift of a codeword
by s coordinates is again a codeword.
Remark 1: A cyclic code is a quasi-cyclic code with s = 1.
Remark 2: Equivalently QC codes of order s can be seen as
codes invariant under the concatenation of s cyclic shifts of
length n

s .
A particular class of QC codes is the class of QC codes ob-

tained by concatenation of cyclic (circulant) codes. Circulant
matrices of size r× r are given by a random first row and the
r − 1 next rows are obtained by cyclic shifts of the first row.

It is well known that in term of miminum distance, random
codes are good (this is the Gilbert-Varshamov bound). Starting
from a [n, k, d] the result comes from the fact that since the
code is random its dual code with a generator matrix of size
(n − k) × n is also random and that the probability that
a random element of Fn

2 belongs to the code is 2−(n−k).
The Gilbert-Varshamov implies that there exists a code with
minimum distance d such that:

d−1∑
i=0

(
n

i

)
< 2n−k

For random QC codes such a result does not hold directly
but if we accept a small constraint on the length, it is possible
to get a similar result:

Consider a length r such that r is prime and such that
2 is primitive root of Z/rZ, then xr − 1 = (x + 1)(1 +
x + x2 + · · · + xr−1 and in that case the circulant matrix
generated by any random word of odd weight is invertible.
This ensures that basically one gets the same type of random
properties in term of minimum weights than for linear codes.
This result is showed by Chen, Peterson and Weldon in [8] (see
also [19],p.507 and [12]). Notice that it is no known whether
there exist an infinite number of such r (this is the Dirichlet
Theorem), but such r are known to exist at least up to 1050

and for the cases we are interested in (small r under 1024)
many are known.

Hence if we start from a random QC code C [n, n − r]
given by its dual code of length n = sr constructed as a
concatenation of s random circulant matrices of length r such

that 2 is a primitive root of Z/rZ we obtain that the probability
that a random codeword belongs to C is close to 2−r and
hence such codes behave like purely random codes with the
same lengths and dimension (in fact it is even a little better,
see [12] for more details). In particular it means that such
codes satisfy the Gilbert-Varshamov bound.

Notice that at the difference of purely random codes it is
not known whether decoding a QC codes is NP-complete,
meanwhile, as far as we know, all classical algorithms used
to decode random codes are not more efficient for decoding
random QC codes. The best algorithms to decode them are
also algorithms based on information set decoding which more
efficient is [7]. Moreover if there existed an algorithm which
was able to decode up to the GV bound in polynomial or sub-
exponential time it would certainly be a major breakthrough in
coding theory. Hence we can be fairly confident that decoding
QC codes up to the GV bound and higher has the same
complexity than for random codes.

III. DESCRIPTION OF THE STREAM CIPHER

We consider a model of stream cipher functionning as a
finite state machine with three procedures:

1) Key and initial value (IV) injection
2) State uptate
3) Output extraction

IV

?

Init. fct

6

K

Update fct

?

Output fct

?

-

�
�

�
�State -

?

⊕
cleartext - - ciphertext

Let
|K| and |IV | denote the key size and initial value size, let r1

denote de state size and r2 the output size. In order to fully
describe the stream cipher we have to provide:

Initialization function g : F|K|
2 × F|IV |

2 → Fr1
2

Update function f1 : Fr1
2 → Fr1

2

Output function f2 : Fr1
2 → Fr2

2

The initialization function computes an initial state e1 from
the key K and the initial value IV . Starting from e1 and at
each time unit i ≥ 1, the machine

• computes the new state ei+1 = f1(ei)
• extracts some bits from the current state si = f2(ei)

Let n and t be two integers chosen such that n/t = 2`.
The functions f1 and f2 will be syndrome mappings acting
on (n, t)-regular words. From the definition of regular words,
we have f1 : F`t

2 → Fr1
2 and f2 : F`t

2 → Fr2
2 . This implies

r1 = `t. In practice we will also choose r1 = r2.



Let H1 and H2 denote two binary matrices of size respec-
tively r1 × n and r2 × n. Let θn,t be the mapping defined in
(1) which transform a binary string of length `t into a (n, t)-
regular word. We define for i = 1, 2

fi : F`t
2 → Fri

2

x 7→ θn,t(x)HT
i

A. Update and output

The state will have a size of `t = r1 bits. The update and
output functions are respectively f1 and f2. We also define the
mapping f defined for all x ∈ F`t

2 by f(x) = f1(x) ‖ f2(x)
(‖ denotes the concatenation). Note that f is also a syndrome
mapping depending on a matrix H obtained by stacking H1

and H2. Though inverting this function f do not appear to
be be meaningful in practical attacks, it is meaningful in the
formal security reduction.

Note that matrix H (and thus matrices H1 and H2) can
be obtained by concatenating circulant matrices. In that case,
only the first row of H is needed to describe both f1 and f2.

B. Initialisation

For that step we will assume r = r1 = r2 the initialization
phase will take as arguments a key of length r/2 and an initial
value of length r/2. It consists of a three round Feistel scheme
using successively the functions f1, f1 and f2:

g(K, IV ) = z ⊕ f2(y ⊕ f1(z)),

where y = K ‖ IV and z = f1(y) ⊕ y. This initialization
requires three function evaluation.

C. Security

A formal security reduction is discussed in the next section.
In practice, the parameters we propose in the last section will
be such that state recovery or key recovery by invertion of
either f1 or f2 is difficult given the present state of art.

We assume r1 = r2 = r. As we mentionned, the best
technique known for inverting the syndrome mapping for
regular word is a birthday attack whose cost is about r2r/2,
decoding attack will have a higher cost. For instance, for
t = 32, n = 8192 and r = 256 finding a given regular word
costs about 2152 binary operations by decoding (see table I)
and about 2136 by a birthday attack. So, for that particular set
of parameters, no attack for recovering the state or the key
is known that would be significantly better than exhaustive
search.

IV. SECURITY OF THE SCHEME

In this part we consider the security of our scheme. Fischer
and Stern have showed in [11], how the security of their
scheme could be related to the security of the syndrome
decoding problem, but they did not give a precise reduction.

In this section, based on their proof and the proof of QUAD
[3], we give a reduction for our construction and a more
precise reduction.

The idea of the proof is to start from a difficult problem
(syndrome decoding here) and to relate the existence of a

distinguisher between the keystream produced and a random
sequence, to the possibility of inverting a difficult problem.

All these proofs are related to the Goldreich-Levin [13]
result linking the existence of pseudo-random generators to
the existence of one-way function.

The reduction of [11] can be directly adapted to our case.
In our case the security of the generator is reduced to the
capacity of finding a regular word x of given weight w which
syndrome xHT is known where H can be either a random
matrix or a quasi-cyclic matrix as described in Section 2.

The proof has three main steps which are linked together
to obtain the main result.

In the following we outline the idea of the proof and only
give the final reduction result. The details of the proofs are
straightforward generalization of [11] and [3].

The first step relates the existence of distinguisher between
an iterated sequence produced and a random string, to a
distinguisher for only an basic iteration. Then the second step
shows that if one has a distinguisher for a unique iteration then
it is possible to convert it into an algorithm which predicts the
result of the product by any vector. At least the final step
relates the existence of such a predictor to the possibility of
inverting the hard to invert basic function (here the syndrome
decoding for regular word and random or quasi-cyclic random
matrix).

We denote by T the maximum computation capacity al-
lowed for the distinguisher (typically 280) to obtain an advan-
tage ε.

The final reduction theorem is as follows:
Theorem 2: Let L = λn be the number of keystream

bits produced by the scheme in time λTS using λ iterations.
Suppose there exists an algorithm A that distinguishes the L-
bit keystraem sequence associated with a known randomly (or
quasi-cyclic randomly) chosen r×n matrix H and an unknown
randomly chosen initial internal state x (corresponding to a
regular word) of weight w of {0, 1}n from a random L-bits
sequence in time T with advantage ε. Then there exists an
algorithm C, which given the image xHT of a randomly
chosen regular word (unknown) x of weight w of {0, 1}n by
a randomly (or QC randomly) chosen r×n matrix H permits
to recover x with a probability at least ε

23λ over all possible
values of x and H in time upper bounded by T ′, such that

T ′ ≈ 27n2λ2

ε2
T (2)

V. PARAMETERS AND PERFORMANCE

A. Practical parameters

We suggest the parameters n = 8192, t = 32, ` = 8,
n/t = 2` = 256 and r = r1 = r2 = `t = 256. The size of the
state is 256 bits. Key and initial value both have 128 bits.
Remark: this case corresponds to the case when the matrix H
is randomly chosen. It also possible to choose parameters (for
a similar computational cost) such that r is a prime and 2 is
primitive root of Z/rZ (like r = 509 or r = 523) in order to



get the random-like properties of QC matrices, but we do not
develop it, in this short version.

We give in Table II different type of parameters besides
the set of parameters suggested (in bold). As we can see, we
obtain a speed and a security comparable to the AES. The
program computing our stream cipher is extremely small but
requires a lot of data (matrix H has a size of 512 kilobytes),
much larger than the table lookup of AES.

A specific version with circulant matrices has not been
implemented yet, however, it would only require one line of
the matrix (1 kilobyte) from which all the columns of the
matrix could be deduced by circular shift. Hopefully, we could
have an efficient implementation, comparable in speed with the
AES, but using less ROM and RAM than AES, which could be
an advantage when implemented on constrained environement.

security (log2) speed
t f1 (or f2) f r key size cycle/byte

16 81 71 128 64 22
24 119 102 192 96 46
32 152 131 256 128 27
48 223 191 384 192 47
64 294 252 512 256 53
128 575 493 1024 512 83

AES-CTR - - - 128 26

TABLE II
PERFORMANCE (PENTIUM IV) AND SECURITY FOR ` = 8

Comments on table II :
• The speed we give is for the implementation of the whole

stream cipher. It compares well with the AES in counter
mode with a similar software implementation. On a 3.4
Ghz PC, the encryption/decryption rate is about 1 Gbit/s.

• Concerning the security of f1 (or f2), there always exists
an attack that costs about 2|K| computations of f1 or f2

(where |K| is the binary size of the key) which enables
to recover the key, or, almost as good, the initial state.

• Though practical attacks cannot be built from an inversion
attack on f , we give its difficulty: the difficulty of the
decoding attack.

• If we apply the security reduction result (equation (2))
for L = 240, T = 280 and ε = 1/100 (like in [3]),
we compare the value obtained by the reduction of (2)
and search for a contradiction when this complexity is
less than the best known attack on f . Taking t = 32 is
clearly not sufficient. Higher values t = 64 or t = 128 are
required in order to obtain a contradiction. Meanwhile,
if we consider the best existing attack, we admit that
t = 32 is sufficient to assure a good heuristic security for
the system.

VI. CONCLUSION

We have presented a new stream cipher with a security
reduction. Compared with the previous proposals based on
codes [11] or quadratic equations [3], it possesses some very
interesting features

• it is as fast as AES in counter mode
• it has a security reduction
• the program as well as the memory requirement are very

small.

Admittedly, the security analysis has to be pursued, in
particular when regular words and quasi-cyclic codes are
concerned. Also, the state of the art for decoding random
linear codes might not be sufficient to consider all the security
aspects of a stream cipher. However this system, whose design
is derived from existing and unbroken systems, combines
many interesting properties.
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