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Finding roots of polynomials over finite fields

Sergei V. Fedorenko, Peter V. Trifonov

Abstract

In this paper we propose an improved algorithm for finding roots of polynomials over finite fields.

This makes possible significant speed up of the decoding process of BCH, Reed-Solomon and some

other error-correcting codes.
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Chien search, error locator polynomial,p-polynomial, linearized polynomial, affine polynomial,

BCH code, Reed-Solomon code

I. INTRODUCTION

It is well known that one of the most time-consuming stages ofdecoding process of Reed-

Solomon, BCH and some other codes is finding roots of the error-locator polynomial. The most

widely known root finding algorithm is Chien search method, which is a simple substitution of

all elements of the field into the polynomial, so it has very high time complexity for the case

of large fields and polynomials of high degree.

In [1] it was shown that every polynomial of degree not higherthan 5 can be transformed

into a canonical form with one or two parameters, so it is possible to construct tables for finding

roots. Moreover, if some roots are located in the same cyclotomic coset, it is possible to eliminate

them using Euclidean algorithm. In their recent paper [2] Truong, Jeng and Reed proposed a

transformation which allows grouping of some summands of the polynomial of degree not higher

than 11 into multiples of affine polynomials. Since affine polynomials can be easily evaluated

using very small pre-computed tables, it is possible to speed up computations. However, their

algorithm suffers from some drawbacks:

1) It can be applied only to polynomials of degree not higher than 11;
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2) Transformation of the polynomial is required. Transformation proposed by authors (y =

x + f6/f7 for polynomialF (x) =
∑11

i=0 fix
i) can not be applied iff7 = 0, so root finding

algorithm becomes more complicated;

3) After transformation the polynomial contains summandf10y
10 + f9y

9 (and f6x
6 if trans-

formation failed). Evaluation of it still requires usage ofChien’s algorithm.

In this paper we propose a common approach which can be used for decomposition and fast

evaluation of any polynomial. We describe it for the case ofGF (2m), but our results can be

generalized for the case of arbitrary field. This technique can be used in realization of Chien

search.

Root finding problem can be formally stated as finding all distinct xi : F (xi) = 0, F (x) =
t

∑

j=0

fjx
j ,

xi, fj ∈ GF (2m). Chien search algorithm solves it by evaluation ofF (x) at all x ∈ GF (2m)\0

with the time complexity

W = (Cadd + Cmul)t(2
m − 1), (1)

whereCadd andCmul are the time complexities of one addition and multiplication in the finite

field respectively. The algorithm described below reduces cost of one polynomial evaluation

using special reordering of field elements.

II. FAST POLYNOMIAL EVALUATION ALGORITHM

Before description of the algorithm let us first consider some definitions and properties.

Definition 1: A polynomial L(y) over GF (2m) is called ap-polynomial forp = 2 if

L(y) =
∑

i

Liy
2i

, Li ∈ GF (2m).

These polynomials are also called linearized polynomials.The following lemma describes the

main property ofp-polynomials.

Lemma 1 ([3]): : Let y ∈ GF (2m) and letα0, . . . , αm−1 be a standard basis. If

y =
m−1
∑

k=0

ykα
k, yk ∈ GF (2)

andL(y) =
∑

j

Ljy
2j

, then

L(y) =

m−1
∑

k=0

ykL(αk).
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A polynomial A(y) over GF (2m) is called an affine polynomial ifA(y) = L(y) + β, β ∈

GF (2m), whereL(y) is a p-polynomial. The above lemma makes possible evaluation of affine

polynomialsA(x) with just one addition at eachxi ∈ GF (2m) if all xi are ordered in their

vector representation as Gray code.

Definition 2: Gray code is an ordering of all binary vectors of lengthm such that only one

bit changes from one entry to the next.

So if xi ∈ GF (2m) are ordered as a Gray code

(i.e. wt(xi − xi−1) = 1, wherewt(a) is the Hamming weight ofa) the following holds:

A(xi) = A(xi−1) + L(∆i), ∆i = xi − xi−1 = αδ(xi,xi−1),

whereδ(xi, xi−1) indicates position in whichxi differs from xi−1 in its vector representation. If

x0 = 0 thenA(x0) = β and the above equation describes the algorithm for evaluation of A(x)

at all points ofGF (2m).

Example 1:Let us consider the case ofGF (23) defined by the primitive polynomialπ(α) =

α3 +α+1. One of many possible Gray codes is the sequence 000, 001, 011, 010, 110, 111, 101,

100 or0, 1, α3, α, α4, α5, α6, α2. So one needs to prepare a table of valuesL(α0), L(α1), L(α2).

ThenA(1) = A(0) + L(α0), A(α3) = A(1) + L(α1) and so on.

This algorithm can be applied for evaluation of any polynomial if it is decomposed into a

sum of affine multiples.

Statement 1:Each polynomialF (x) =
∑t

j=0 fjx
j ,

fj ∈ GF (2m) can be represented as

F (x) = f3x
3 +

⌈(t−4)/5⌉
∑

i=0

x5i(f5i +

3
∑

j=0

f5i+2j x2j

),

where⌈a⌉ is the smallest integer greater than or equal toa.

Proof: Let k be the smallest integer such that5k − 1 ≥ t and assume that for alli >

t fi = 0. Then the above equation can be represented as

F (x) = Fk(x) = f3x
3 +

∑k−2
i=0 x5i(f5i +

∑3
j=0 f5i+2jx2j

) +

x5(k−1)(f5(k−1) +
∑2

j=0 f5(k−1)+2j x2j

).
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For t = 4 (k = 1) this is obvious. Let us assume thatFk(x) has been decomposed as described.

ThenFk+1(x) = Fk(x) + x5k(f5k + f5k+1x + f5k+2x
2 + f5k+4x

4) + x5(k−1)f5(k−1)+8x
8. The last

summand of this expression can be grouped with the last summand of the decomposition of

Fk(x).

p-polynomials appearing in this decomposition have only 4 summands. In some cases intro-

ducing additional summands can reduce the total amount of affine polynomials in the final

decomposition.

So the whole root finding algorithm is as follows:

1) ComputeL(k)
i = Li(α

k), k = [0; m − 1],

i ∈ [0; ⌈(t−4)/5⌉], whereLi(x) arep-polynomials appearing in the above decomposition:

Li(x) =
∑3

j=0 f5i+2j x2j

;

2) Initialize A
(0)
i = f5i;

3) Represent eachxj ∈ GF (2m), j ∈ [0; 2m − 1] in standard basis as an element of Gray

code withx0 = 0, computeA(j)
i = A

(j−1)
i + L

(δ(xj ,xj−1))
i , j ∈ [1; 2m − 1];

4) ComputeF (xj) = f3x
3
j +

∑⌈(t−4)/5⌉
i=0 x5i

j A
(j)
i ,

j ∈ [1; 2m − 1], andF (0) = f0. If F (xj) = 0 then xj is a root of the polynomial. Note

that the second summand of this sum can be computed using Horner’s rule.

The total time complexity of this algorithm consists of complexity of preliminary computations

(first summand) and complexity of polynomial evaluation andis equal to

Wfast = m
⌈

t+1
5

⌉

(4Cmul + 3Cadd) +

(
⌈

t+1
5

⌉

(2Cadd + Cmul) + 2Cexp)(2
m − 1), (2)

whereCexp denotes the time complexity of one exponentiation over the finite field.

III. SIMULATION RESULTS

To demonstrate the efficiency of the new algorithm it has beenimplemented in C++ pro-

gramming language, compiled with MS Visual C++ 6.0 compilerand software simulation on

AMD Athlon 1700 XP processor on Windows XP operating system has been performed. The

multiplication of field elements inGF (28) was implemented using tables of logarithms and

antilogarithms. The computation times required to evaluate the polynomials at the field elements

α0, . . . , α254 were averaged over 100000 computations and shown in Table 1.
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TABLE I

COMPUTATION TIME IN MICROSECONDS FOR EVALUATING THE POLYNOMIALS

Degree Chien search TJR method New method New method speedup rate

6 17.2 16.7 14.9 1.15

7 19.8 18.2 15.1 1.31

8 22.2 19.6 15.2 1.46

9 24.6 20.3 15.3 1.60

10 27.2 20.9 17.3 1.57

11 29.6 20.6 18.2 1.62

16 42.3 — 21.4 1.97

24 61.8 — 25.8 2.39

32 81.4 — 31.4 2.59

Note that speedup rates for Truong, Jeng and Reed method are significantly lower than

shown in [2]. This is caused by different implementation of multiplication operation used in

our simulations.

Comparing expressions (1) and (2) and corresponding experimental results one can see that

this algorithm can be up to 2.6 times faster than Chien searchdepending on implementation of

operations overGF (2m).

IV. CONCLUSIONS

In this paper we proposed an algorithm for evaluation of arbitrary polynomials at many points

of the finite field with significantly better performance thanwell-known Chien search. Sometimes

performance of this algorithm can be further improved by construction of different polynomial

decompositions.
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