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Goppa Codes 
Invited Paper 

ELWYN R. BERLEKAMP 

Absfruct-Goppa described a new class of linear noncyclic error- 
correcting codes in [l] and [2]. This paper is a summary of Goppa’s 
work, which is not yet available in English.’ We prove the four most 
important properties of Goppa codes. 1) There exist q-ary Goppa codes 
with lengths and redundancies comparable to BCH codes. For the same 
redundancy, the Goppa code is typically one digit longer. 2) All Goppa 
codes have an algebraic decoding algorithm which will correct up to a 
certain number of errors, comparable to half the designed distance of 
BCH codes. 3) For binary Goppa codes, the algebraic decoding algorithm 
assumes a special form. 4) Unlike primitive BCH codes, which are known 
to have actual distances asymptotically equal to their designed distances, 
long Goppa codes have actual minimum distances much greater than 
twice the number of errors, which are guaranteed to be correctable by the 
algebraic decoding algorithm. In fact, long irreducible Goppa codes 
asymptotically meet the Gilbert bound. 

I. DEFINITION 

ET q be a prime power, let m be any integer, let g(z) L be any polynomial with coefficients in GF (qm), let 
L denote a subset of elements of GF (4”‘) that are not roots 
of g(z), and let IL] be the number of elements in L. (Unless 
otherwise specified, we will take L to be the set of all 
elements of GF (4”‘) that are not roots of g(z).) Then there 
is a Goppa code with symbol field GF (q), location field 
GF (qm), Goppa polynomial g(z), and length ILI. Its co- 
ordinates are most conveniently indexed by the elements of 
L. The code is defined as the set of all vectors C that satisfy 
the condition 

C A E 0 mod g(z). 
ysLZ - y 

If one expands the left-hand side of this congruence in 
powers of z mod g(z), and then equates coefficients to zero, 
one obtains a set of deg g linear equations in the com- 
ponents C,, of C, which may be viewed as parity-check 
equations. This immediately yields the following theorem. 

Theorem 1: Goppa codes are linear. The redundancy of 
the code with Goppa polynomial g(z) is at most deg g. 

II. ALGEBRAIC DECODING 

If the error vector E is added to the transmitted codeword 
C, then the received word R is given by 

R=C+E 
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whence 

Since C is a codeword, the first sum on the right-hand side 
vanishes mod g(z), and we have 

C A E C A mod g(z). 
ysL z - y yeLZ - y 

It is therefore natural to define the syndrome polynomial 
S(z) as the polynomial of degree less than deg g(z) such that 

S(z) G c -% mod g(z). 
yeLZ -y 

We have just shown that 

S(z) E c A mod g(z). 
yeLZ - y 

Let A4 be the subset of L such that Ey # 0 iffy E M. Then 

S(z) 3 c 5 mod g(z). 
ye&f z - y 

As usual in algebraic coding theory, we now introduce the 
polynomial whose roots are the locations of the errors, 

dz> = ,FM tz - r>* (3) 

(This form of the error-locator polynomial is the reciprocal 
of the form used throughout [3].) We also now define a 
variant of the error-evaluator polynomial, which for Goppa 
codes is most conveniently taken as 

1(z) = yzlM EY a Jy) (z - 8). (4) 

It is obvious that b(z) and q(z) must be relatively prime. 
Differentiating (3) formally gives 

a’(z) = c fl (z - a) 
yehf as&f-(y) 

whence, for each y E it4, 

V(Y) = E, aE~(y) (Y - 8) = EYeY) 

so that E,, = q(y)/o’(y). Hence, once we have found the 
polynomials d and q, the rest of the decoding is straight- 
forward. The coordinates of the error vector are given as 

0, if a(y) # 0 
E, = V(Y) if a(y) = 0 (6) 

al(r) ’ 
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where a’(z) is the formal derivative of a(~).~ The  crux of 
the decoding problem is therefore to determine the 
coefficients of the polynomials o  and q. 

To  accomplish this, we must relate cr and  q  to the syn- 
drome as given by (2). Mu ltiplying (2) by (3) gives the 
desired relation, name ly, 

S(z) * o(z) E q(z) mod  g(z). (7) 
Following the analogy to [3, eq. (7.23)], I call congruence 
(7) the key equation for decoding Goppa codes. G iven g(z) 
and  S(z), the decoder’s problem is to find low-degree 
polynomials e(z) and  q(z) that satisfy (7). 

By reducing each power of z mod  g(z) and  equat ing co- 
efficients of 1,z,z2,. * - ,zdegg-r, it becomes evident that (7) 
is a  system of deg  g  linear equations in the unknown co- 
efficients of rr and  q. Hence, to prove that the decoder is 
able to correct all patterns of up  to t errors, it is sufficient 
to show that (7) has no  more than one solution with deg o  
and deg q  sufficiently small, as this uniqueness is obviously 
equivalent to the corresponding set of l inear equations 
being linearly independent.  

W e  therefore consider the conditions under  which there 
are two different pairs of solutions to (7): 

S(z)a(‘)(z) E q(‘)(z) mod  g(z) (8) 

S(z)ac2)(z) = t,~(‘)(z) mod  g(z) (9) 
where a(‘)(z) and  q(‘)(z) are relatively prime, as are a(‘)(z) 
and  V(~)(Z). If a(‘)(z) and  g(z) had  any common factor, 
then this factor would have to divide r(‘)(z), contradicting 
the assumption that cr(l) and  q(l) are relatively prime. Thus 
we may divide (8) by a(‘)(z) to obtain 

S(z) = e  mod  g(z) 

and, similarly, from (8), 

S(z) = $f mod  g(z) 

whence 

Ok z a(2)(z)rf’)(z) mod  g(z). (10) 
If deg  g  = 2t and deg a(‘) I t, deg o(‘) I t, deg v(2) c t, 
deg q(l) < t, then (10) becomes 

a’1’(z)q’2’(z) = a(2yz)p(z). (11) 
From (1 l), a(‘) divides o(2)@), and  since o(l) and  q(l) are 
relatively prime, o(l) must divide ot2). Similarly, a(‘) must 
divide #). Since both are man ic, it follows that a(‘) = crc2), 
whence u(l) = qc2). Th  is proves that if deg  g  = 2t, then (7) 
has at most one  solution with deg r < deg cr I t, and this 
implies that the corresponding system of l inear equations in 
the unknown coefficients of CJ and q  must be  nonsingular. 
W e  restate this conclusion as a  theorem. 

2 Notice that (6) is an improvement over [3, eq. (10.14)], because by 
using o’ we are able to determine the value of each error symbol as it 
is located rather than first finding all error locations and then all 
error values. 

Theorem 2: If deg  g(z) = 2t, then there is a  t-error- 
correcting algebraic decoding algorithm for the q-ary Goppa 
code with Goppa polynomial g(z). 

To  strengthen this result in the binary case, we first 
observe that since all nonzero Ey = 1, (4) and  (5) coincide. 
Hence (10) becomes ‘i 

~(‘)(a(~)) z d2)(d1)) mod  g(z). (12) 
Writing 6  for the even part of o  and zcr’ for the odd part 

of g, (12) becomes 
(&(l, + zo(1)‘)o(2)’ 

i3(l)a(2)’ + #2)@’ 

Since every polynomial on  

E  (&.W + z~w)~u)’ 

E 0  mod  g(z). 
the left-hand side of 

even, the left-hand side is a  perfect square, and  (13) 
,3($9’ + &‘+‘l” E 0  mod  g(z) 

(13) 
(13) is 
implies 

(14) 
where g(z) is the mu ltiple of g(z) of least degree such that 
S is a  perfect square. (For example, if g(z) is squarefree, 
then 3  = g2.) Hence, if deg  g  = 2t, deg o(l) I t, and 
deg a(‘) I t, then (14) implies that 

from which, by relative primality, cr(l) = crc2). W e  restate 
this result as a  theorem. 

Theorem 3: If deg  g(z) = t, and if g(z) has no  repeated 
irreducible factors, then there is a  t-error-correcting alge- 
braic decoding algorithm for the binary Goppa code with 
Goppa polynomial g(z). 

In the special case in which g(z) is a  power of z, (7) 
reduces to [3, eq. (7.23)]. From this, it can easily be  shown 
that the Goppa code with Goppa polynomial zZr is identical 
to a  primitive BCH code. In this case, the system of l inear 
equations represented by (7) can be  solved by the iterative 
algorithm given in [3, sec. 7.41. Unfortunately, no  method 
of comparable simplicity is known for solving (7) in the 
case of more general  g(z). 

III. THE ASYMPTOTIC GILBERT BOUND 

W e  have just seen that the Goppa codes include the 
primitive BCH codes as a  special case. O f course the class 
of Goppa codes also includes many classes of non-BCH 
codes. The  Goppa codes for which g(z) is irreducible over 
GF  (qm) are called irreducible Goppa codes. W e  shall now 
show that most long irreducible Goppa codes satisfy the 
G ilbert bound on  m inimum distance. To  this end, we let 
g”‘(z),g’2’(z) * - - ,g(‘)(z) be  the distinct irreducible poly- 
nomials of ddgree t over GF  (4”). According to the well- 
known theorem presented elsewhere [3, theorem 3.431, the 
number  of irreducible q-ary t-tics is 

mf/d > q”’ (1 _ q -(mr/2)+1) - 
t 

dji 

where p(d) is the Moeb ius function. Now the vector Y is 
in the Goppa code with Goppa polynomial g”‘(z) iff 

CL z 0  mod  g”‘(z). 
YE’=(P) Z - y 

Authorized licensed use limited to: Nanjing Southeast University. Downloaded on August 18,2010 at 09:46:23 UTC from IEEE Xplore.  Restrictions apply. 



592 IEEE TRANSACTIONS ON INFORh4ATION THEORY,  SEPTEMRER 1973 

If the Hamming weight of Y is d, then 

xx- 
YEGF(qm) Z - y 

is a rational function which can be written as the quotient 
of a numerator of degree I (d - 1) and a denominator of 
degree d. The Goppa polynomial of each Goppa code 
containing Y must divide the numerator. Since all ir- 
reducible q-ary t-tics are pairwise relatively prime, it follows 
that the number of irreducible Goppa codes containing Y 
is at most L(d - 1)/t]. We now overbound the number of 
Goppa codes which contain words of weight 5 D by 
summing over all ($‘)(q - l)d vectors of weight d I D 
and bounding the number of Goppa codes containing each. 
If 

die [d+] (q - 1)d (7) < $ (1 - q-(m@)+l) (15) 

then the number of “bad” irreducible Goppa codes is less 
than the total number of irreducible Goppa codes, so there 
must be some remaining irreducible Goppa codes which 
have m inimum distance 2 D. For large n = qm, the ir- 
reducible Goppa codes have rate 2 R if we set t = 
[(l - R)q*]/m, and inequality (15) is easily seen to be only 
negligibly weaker asymptotically than the classical Gilbert 
criterion for the existence of codes with distance D; this 
criterion is 

d$o (4 - ljd (3 < qcl-R)“. 
We state the conclusion as Theorem 4. 

Theorem 4: If R is any given rate, 0 < R < (q - 1)/q, 
and if E is any small positive constant, then almost all 
irreducible q-ary Goppa codes of rate R and long length n 
have m inimum distance no more than en less than the 
Gilbert bound. 

IV. CONCLUDING REMARKS 

A number of equivalent reformulations of Goppa codes 
are given in [l, sec. 31 and [2, sets. 2, 31. In [2, sec. 41 a 

more detailed proof of the fact that primitive BCH codes 
are a special class of Goppa codes is presented. In [2, 
sec. 51 there is a survey of a number of other types of 
codes, including Srivastava codes and Gabidulin codes, 
which are also easily seen to be weak special cases of Goppa 
codes. 

A detailed example of the (16,8,5) binary Goppa code is 
presented in [ 1, sec. 61. In [l, sec. 71 Goppa proves that, 
under certain quite restrictive hypotheses, the BCH codes 
are the only cyclic Goppa codes. Later, Berlekamp and 
Moreno [4] showed that all double-error-correcting binary 
Goppa codes become cyclic when extended by an overall 
parity check. In particular, the (16,8,5) binary Goppa code 
may be obtained by shortening the binary quadratic residue 
code of length 17. We are still investigating the possibility 
of close relationships between other special classes of Goppa 
codes and cyclic codes. 

In a subsequent paper [S], Goppa introduced several 
new classes of codes based on the codes described here. 
The new classes have the following parameters: 1) q-ary 
codeswithn=q”m,k=n-2mt,d>2t+1;2)q-ary 
codes with n = qm - 2t + m(2t - 1) + 1, k = qm - 2t, 
d 2 2t + 1; and 3) binary codes with n = 2” + mt, k = 
2” - t, d 2 2t + 1. This new class of binary codes in- 
cludes an infinite number of codes which are better than any 
known Goppa code of the type discussed here, although at 
any tixed rate the lower bound on the distance of these new 
codes is asymptotically weaker than that for comparable 
BCH codes. 
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