
Inversion of Circulant Matrices over Zm

Dario Bini1, Gianna M. Del Corso2 Giovanni Manzini2,3, Luciano Margara4

1 Dipartimento di Matematica, Università di Pisa, 56126 Pisa, Italy.
2 Istituto di Matematica Computazionale, Via S. Maria, 46, 56126 Pisa, Italy.
3 Dipartimento di Scienze e Tecnologie Avanzate, Università di Torino, 15100

Alessandria, Italy.
4 Dipartimento di Scienze dell’Informazione, Università di Bologna, 40127 Bologna,

Italy.

Abstract. In this paper we consider the problem of inverting an n× n
circulant matrix with entries over Zm. We show that the algorithm for
inverting circulants, based on the reduction to diagonal form by means
of FFT, has some drawbacks when working over Zm. We present three
different algorithms which do not use this approach. Our algorithms re-
quire different degrees of knowledge of m and n, and their costs range —
roughly — from n log n log log n to n log2 n log log n log m operations over
Zm. We also present an algorithm for the inversion of finitely generated
bi-infinite Toeplitz matrices. The problems considered in this paper have
applications to the theory of linear Cellular Automata.

1 Introduction

In this paper we consider the problem of inverting circulant and bi-infinite
Toeplitz matrices with entries over the ring Zm. In addition to their own in-
terest as linear algebra problems, these problems play an important role in the
theory of linear Cellular Automata.

The standard algorithm for inverting circulant matrices with real or complex
entries is based on the fact that any n× n circulant is diagonalizable by means
of the Fourier matrix F (defined by Fij = ω(i−1)(j−1) where ω is a primitive n-th
root of unity). Hence, we can compute the eigenvalues of the matrix with a single
FFT. To compute the inverse of the matrix it suffices to invert the eigenvalues
and execute an inverse FFT. The total cost of inverting an n × n circulant is
therefore O(n log n) arithmetic operations.

Unfortunately this method does not generalize, not even for circulant matri-
ces over the field Zp. The reason is that if gcd(p, n) > 1 no extension field of
Zp contains a primitive n-th root of unity. As a consequence, n × n circulant
matrices over Zp are not diagonalizable. If gcd(p, n) = 1 we are guaranteed that
a primitive n-th root of unity exists in a suitable extension of Zp. However, the
approach based on the FFT still poses some problems. In fact, working in an
extension of Zp requires that we find a suitable irreducible polynomial q(x) and
every operation in the field involves manipulation of polynomials of degree up
to deg(q(x))− 1.

In this paper we describe three algorithms for inverting an n × n circulant
matrix over Zm which are not based on the reduction to diagonal form by means
of FFT. Instead, we transform the original problem into an equivalent problem
over the ring Zm[x]. Our first algorithm assumes the factorization of m is known
and it requires n log2 n+ n logm multiplications and n log2 n log log n additions
over Zm. Our second algorithm does not requires the factorization of m and
its cost is a factor logm greater than in the previous case. The third algorithm
assumes nothing about m but works only for n = 2k. It is the fastest algorithm
and it has the same asymptotic cost of a single multiplication between degree n
polynomials in Zm[x]. Finally, we show that this last algorithm can be used to
build a fast procedure for the inversion of finitely generated bi-infinite Toeplitz
matrices.

The problem of inverting a circulant matrix with entries over an arbitrary
commutative ring R has been addressed in [4]. There, the author shows how to
compute the determinant and the adjoint of an n×n circulant matrix of the form
I+
∑l

i=1 βiU
i, (where Uij = 1 for i− j ≡ 1 (mod n) and 0 otherwise). A naive

implementation of the proposed method takes O
(
nl + 2l

)
operations over R.

Although the same computation can be done in O(nl +M(l) log n) operations,
where M(l) is the cost of l × l matrix multiplication (hence, M(l) = lω, with
2 ≤ ω < 2.376), this algorithm remains competitive only for very small values
of the “band” l.

2 Definitions and notation

Circulant matrices. Let U denote the n× n cyclic shift matrix whose entries
are Uij = 1 if j − i ≡ 1 (mod n), and 0 otherwise. A circulant matrix over
Zm can be written as A =

∑n−1
i=0 aiU

i, where ai ∈ Zm. Assuming det(A) is
invertible over Zm, we consider the problem of computing a circulant matrix
B =

∑n−1
i=0 biU

i, such that AB = I (it is well known that the inverse of a
circulant matrix is still circulant).

It is natural to associate with a circulant matrix A =
∑n−1

i=0 aiU
i the poly-

nomial (over the ring Zm[x]) f(x) =
∑n−1

i=0 aix
i. Computing the inverse of A is

clearly equivalent to finding a polynomial g(x) =
∑r

i=0 bix
i in Zm[x] such that

f(x)g(x) ≡ 1 (mod xn − 1). (1)

The congruence modulo xn − 1 follows from the equality Un = I. Hence, the
problem of inverting a circulant matrix is equivalent to inversion in the ring
Zm[x]/(xn − 1).

Bi-infinite Toeplitz matrices. LetW,W−1,W 0 denote the bi-infinite matrices
defined by

Wij =
{

1, if j − i = 1,
0, otherwise; W−1

ij =
{

1, if i− j = 1,
0, otherwise; W 0

ij =
{

1, if j = i,
0, otherwise;

where both indices i, j range over Z. If we extend in the obvious way the matrix
product to the bi-infinite case we have WW−1 = W−1W = W 0. Hence, we can
define the algebra of finitely generated bi-infinite Toeplitz matrices over Zm as
the set of all matrices of the form

T =
∑

i∈Z
aiW

i

where ai ∈ Zm and only finitely many of them are nonzero. An equivalent
representation of the elements of this algebra can be obtained using finite formal
power series (fps) over Zm. For example, the matrix T above is represented by the
finite fps hT (x) =

∑
i∈Z aix

i. In the following we use Zm{x} to denote the set of
finite fps over Zm. Instead of stating explicitly that only finitely many coefficients
are nonzero, we write each element f(x) ∈ Zm{x} as f(x) =

∑r
i=−r bix

i (where
some of the bi’s can still be zero). Computing the inverse of a bi-infinite Toeplitz
matrix T is clearly equivalent to finding g(x) ∈ Zm{x} such that

hT (x)g(x) ≡ 1 (mod m). (2)

Hence, inversion of finitely generated Toeplitz matrices is equivalent to inversion
in the ring Zm{x}.
Connections with Cellular Automata theory. Cellular Automata (CA) are
dynamical systems consisting of a finite or infinite lattice of variables which can
take a finite number of discrete values. The global state of the CA, specified by
the values of all the variables at a given time, evolves in synchronous discrete
time steps according to a given local rule which acts on the value of each single
variable. In the following we restrict our attention to linear CA, that is, CA
which are based on a linear local rule (they are sometimes called additive CA).
Despite of their apparent simplicity, linear CA may exhibit many complex be-
haviors (see for example [5, 6, 9–11, 14]). Linear CA have been used for pattern
generation, design of error correcting codes and cipher systems, generation of
hashing functions, etc. (see [3] for a survey of recent applications).

An infinite one-dimensional linear CA is defined as follows. For m ≥ 2, let
Cm denote the space of configurations

Cm = {c | c: Z→ Zm} ,

which consists of all functions from Z into Zm. Each element of Cm can be
visualized as a bi-infinite array in which each cell contains an element of Zm. A
local rule of radius r is defined by

f(x−r, . . . , xr) =
r∑

i=−r

aixi mod m, (3)

where the 2r + 1 coefficients a−r, . . . , a0, . . . , ar belong to Zm. The global map
F : Cm → Cm associated to the local rule f is given by

[F (c)](i) =
r∑

j=−r

ajc(i+ j) mod m, ∀c ∈ Cm, ∀i ∈ Z.

In other words, the content of cell i in the configuration F (c) is a function of
the content of cells i− r, . . . , i+ r in the configuration c.

Finite one-dimensional additive CA (of size n) are defined over the configu-
ration space

C∗n,m = {c | c: {0, 1, . . . , n− 1} → Zm} ,

which can be seen as the set of all possible n-tuples of elements of Zm. To the
local rule (3) we associate the global map G: C∗n,m → C∗n,m defined by

[G(c)](i) =
r∑

j=−r

ajc(i+ j mod n) mod m, ∀c ∈ C∗n,m, ∀i ∈ {0, 1, . . . , n− 1}.

In other words, the new content of cell i depends on the content of cells i −
r, . . . , i + r, and we wrap around the borders of the array when i + r ≥ n or
i− r < 0.

Linear CA are often studied using formal power series. To each configuration
c ∈ Cm we associate the infinite fps

Pc(x) =
∑

i∈Z
c(i)xi.

The advantage of this representation is that the computation of a linear map
is equivalent to power series multiplication. Let F : Cm → Cm be a linear map
with local rule (3). We associate to f the finite fps A(x) ∈ Zm{x} given by
A(X) =

∑r
i=−r aix

−i. Then, for any c ∈ Cm we have

PF (c)(x) = Pc(x)A(x) mod m.

For finite additive CA we use a similar representation. To each configuration
c ∈ C∗n,m we associate the polynomial of degree n− 1

Pc(X) =
∑n−1

i=0
c(i)xi.

Then, for any configuration c ∈ C∗n,m we have

PG(c)(x) = [Pc(x)A(x) (mod xn − 1)] mod m.

The above results show that the inversion of the global maps F and G is equiva-
lent to the inversion of A(x) in Zm{x} and Zm[x]/(xn−1) respectively. Therefore
they are also equivalent to the inversion of bi-infinite Toeplitz and circulant ma-
trices.

Conditions for invertibility over Zm{x} and Zm[x]/(xn − 1). A necessary
and sufficient condition for the invertibility of an element in Zm{x} has been
given in [6] where the authors prove that a finite fps f(x) =

∑r
i=−r aix

i is
invertible if and only if for each prime factor p of m there exists a unique co-
efficient ai such that p6 |ai. The following theorem (proved in [9]) provides an
equivalent condition which does not require the knowledge of the factorization
of the modulus m.

Theorem 1. Let f(x) =
∑r

i=−r aix
i be a finite fps over Zm, and let k =

blog2mc. For i = −r, . . . , r, define

zi = [gcd(ai,m)]k , and qi =
m

gcd(m, zi)
.

Then, f(x) is invertible if and only if q−r · · · qr = m. ut

The following theorem states a necessary and sufficient condition for the invert-
ibility of a circulant matrix over Zm.

Theorem 2. Let m = pk1
i p

k2
2 · · · p

kh

h , denote the prime powers factorization of
m and let f(x) denote the polynomial over Zm associated to a circulant matrix
A. The matrix A is invertible if and only if, for i = 1, . . . , h, we have

gcd(f(x), xn − 1) = 1 in Zpi
[x]

Proof. If A is invertible, by (1) we get that there exists t(x) such that for i =
1, . . . , h

f(x)g(x) + t(x)(xn − 1) = 1 in Zpi [x].

Hence, gcd(f(x), xn − 1) = 1 in Zpi
[x] as claimed. The proof that the above

condition is sufficient for invertibility is constructive and will be given in Section 3
(Lemmas 1 and 2). ut

Note that for m prime the above result coincides with the condition given in [5,
Theorem 2.4] for the invertibility of circulant matrices over finite fields.

Review of bit complexity results. In the following we will give the cost of
each algorithm in terms of number of bit operations. In our analysis we use the
following well known results (see for example [1] or [2]). Additions and subtrac-
tions in Zm take O(logm) bit operations. We denote by µ(d) = d log d log log d
the number of bit operations required by the Schönhage-Strassen algorithm [13]
for multiplication of d-digits integers. Hence, multiplication between elements
of Zm takes µ(logm) = logm log logm log log logm bit operations. Computing
the inverse of an element x ∈ Zm takes µ(logm) log logm bit operations us-
ing a modified extended Euclidean algorithm (see [1, Theorem 8.20]). The same
algorithm returns gcd(x,m) when x is not invertible.

The sum of two polynomials in Zm[x] of degree at most n can be trivially
computed in O(n logm) bit operations. The product of two such polynomi-
als can be computed in O(n log n) multiplications and O(n log n log log n) ad-
ditions/subtractions in Zm (see [2, Theorem 7.1]). Therefore, the asymptotic
cost of polynomial multiplication is O(Π(m,n)) bit operations1 where

Π(m,n) = n log nµ(logm) + n log n log log n logm. (4)

1 This bound can be reduced when m is prime and we are allowed to do some prepro-
cessing, see [7].

Given two polynomials a(x), b(x) ∈ Zp[x] (p prime) of degree at most n, we can
compute d(x) = gcd(a(x), b(x)) in O(Γ (p, n)) bit operations, where

Γ (p, n) = Π(p, n) log n+ nµ(log p) log log p. (5)

The same algorithm also returns s(x) and t(x) such that a(x)s(x) + b(x)t(x) =
d(x). The bound (5) follows by a straightforward modification of the polynomial
gcd algorithm described in [1, Sec. 8.9] (the term nµ(log p) log log p comes from
the fact that we must compute the inverse of O(n) elements of Zp).

3 Inversion in Zm[x]/(xn − 1). Factorization of m known

In this section we consider the problem of computing the inverse of a circulant
matrix over Zm when the factorization m = pk1

1 p
k2
2 · · · p

kh

h of the modulus m is
known. We consider the equivalent problem of inverting a polynomial f(x) over
Zm[x]/(xn − 1), and we show that we can compute the inverse by combining
known techniques (Chinese remaindering, the extended Euclidean algorithm,
and Newton-Hensel lifting). We start by showing that it suffices to find the
inverse of f(x) modulo the prime powers pki

i .

Lemma 1. Let m = pk1
1 p

k2
2 · · · p

kh

h , and let f(x) be a polynomial in Zm[x]. Given
g1(x), . . . , gh(x) such that

f(x)gi(x) ≡ 1 (mod xn − 1) in Z
p

ki
i

[x] i = 1, 2, . . . h.

Then, we can find g(x) ∈ Zm[x] which satisfies (1) at the cost of O(nhµ(logm) + µ(logm) log logm)
bit operations.

Proof. The proof is constructive. Since f(x)gi(x) ≡ 1 (mod xn− 1) in Z
p

ki
i

[x],
we have

f(x)gi(x) ≡ 1 + λi(x)(xn − 1) (mod pki
i).

Let αi = m/pki
i . Clearly, for j 6= i, αi ≡ 0 (mod p

kj

j). Since gcd(αi, p
ki
i) = 1,

we can find βi such that αiβi ≡ 1 (mod pki
i). Let

g(x) =
h∑

i=1

αiβigi(x), λ(x) =
h∑

i=1

αiβiλi(x).

By construction, for i = 1, 2, . . . , h, we have g(x) ≡ gi(x) (mod pki
i) and λ(x) ≡

λi(x) (mod pki
i). Hence, for i = 1, 2, . . . , h, we have

f(x)g(x) =
h∑

j=1

αjβjf(x)gj(x)

≡ f(x)gi(x) (mod pki
i)

≡ 1 + λi(x)(xn − 1) (mod pki
i)

≡ 1 + λ(x)(xn − 1) (mod pki
i).

We conclude that

f(x)g(x) ≡ 1 + λ(x)(xn − 1) (mod m),

or, equivalently,

f(x)g(x) ≡ 1 (mod xn − 1) in Zm[x].

The computation of g(x) consists in n (one for each coefficient) applications
of Chinese remaindering. Obviously, the computation of αi, βi, i = 1, . . . , h,
should be done only once. Since integer division has the same asymptotic cost
than multiplication, we can compute α1, . . . , αh in O(hµ(logm)) bit operations.
Since each βi is obtained through an inversion in Zki

pi
, computing the β1, . . . , βh

takes O
(∑h

j=1 µ(log pkj

j) log log pkj

j

)
bit operations . Finally, given α1, . . . , αh,

β1, . . . , βh, g1(x), . . . , gh(x) we can compute g(x) in O(nhµ(logm)) bit opera-
tions. The thesis follows using the inequality µ(log a) log log a+µ(log b) log log b ≤
µ(log ab) log log(ab).

In view of Lemma 1 we can restrict ourselves to the problem of inverting a
polynomial over Zm[x]/(xn − 1) when m = pk is a prime power. Next lemma
shows how to solve this particular problem.

Lemma 2. Let f(x) be a polynomial in Zpk [x]. If gcd(f(x), xn−1) = 1 in Zp[x],
then f(x) is invertible in Zpk [x]/(xn−1). In this case, the inverse of f(x) can be
computed in O

(
Γ (p, n) +Π(pk, n)

)
bit operations, where Γ (p, n) and Π(pk, n)

are defined by (5) and (4).

Proof. If gcd(f(x), xn−1) = 1 in Zp[x], by Bezout’s lemma there exist s(x), t(x)
such that

f(x)s(x) + (xn − 1)t(x) ≡ 1 (mod p).

Next we consider the sequence

g0(x) = s(x), gi(x) = 2gi−1(x)− [gi−1(x)]2f(x) mod (xn − 1).

It is straightforward to verify by induction that gi(x)f(x) ≡ 1+p2i

λi(x) (mod xn−
1). Hence, the inverse of f(x) in Zpk [x]/(xn − 1) is gdlog ke(x).

The computation of s(x) takes O(Γ (p, n)) bit operations. For computing the
sequence g1, . . . , gdlog ke we observe that it suffices to compute each gi modulo
p2i

. Hence, the cost of obtaining the whole sequence is

O
(
Π(p2, n) +Π(p4, n) + · · ·+Π(p2dlog ke

, n)
)

= O
(
Π(pk, n)

)
bit operations.

Note that from Lemmas 1 and 2, we get that the condition given in Theorem 2
is indeed a sufficient condition for invertibility of a circulant matrix. Combining

Inverse1(f(x), m, n)→ g(x)
{Computes the inverse g(x) of the polynomial f(x) in Zm[x]/(xn − 1)}

1. let m = pk1
1 pk2

2 . . . p
kh
h ;

2. for j = 1, 2, · · · , h do
3. if gcd(f(x), xn − 1) = 1 in Zpj [x] then
4. compute gj(x) such that f(x)gj(x) ≡ 1 (mod xn − 1) in Z

p
kj
j

[x]

5. using Newton-Hensel lifting (Lemma 2);
6. else
7. return “f(x) is not invertible”;
8. endif
9. endfor
10. compute g(x) using Chinese remaindering (Lemma 1).

Algorithm 1. Inversion in Zm[x]/(xn − 1). Factorization of m known.

the above lemmas we get Algorithm 1 for the inversion of a polynomial f(x)
over Zm[x]/(xn − 1). The cost of the algorithm is

T (m,n) = O

(
nhµ(logm) + µ(logm) log logm+

∑h

j=1
Γ (pj , n) +Π(pkj

j , n)
)

bit operations. In order to get a more manageable expression, we bound h with
logm and pj with p

kj

j . In addition, we use the inequalities Π(a, n) + Π(b, n) ≤
Π(ab, n) and Γ (a, n) + Γ (b, n) ≤ Γ (ab, n). We get

T (m,n) = O(n logmµ(logm) + µ(logm) log logm+ Γ (m,n) +Π(m,n))
= O(n logmµ(logm) +Π(m,n) log n) .

Note that if m = O(n) the dominant term is Π(m,n) log n. That is, the cost of
inverting f(x) is asymptotically bounded by the cost of executing log n multi-
plications in Zm[x].

4 A general inversion algorithm in Zm[x]/(xn − 1)

The algorithm described in Section 3 relies on the fact that the factorization of
the modulus m is known. If this is not the case and the factorization must be
computed beforehand, the increase in the running time may be significant since
the fastest known factorization algorithms require time exponential in logm
(see for example [8]). In this section we show how to compute the inverse of f(x)
without knowing the factorization of the modulus. The number of bit operations
of the new algorithm is only a factor O(logm) greater than in the previous case.

Our idea consists in trying to compute gcd(f(x), xn − 1) in Zm[x] using the
gcd algorithm for Zp[x] mentioned in Section 2. Such algorithm requires the
inversion of some scalars, which is not a problem in Zp[x], but it is not always

possible if m is not prime. Therefore, the computation of gcd(f(x), xn − 1) may
fail. However, if the gcd algorithm terminates we have solved the problem. In
fact, together with the alleged2 gcd a(x) the algorithm also returns s(x), t(x)
such that f(x)s(x) + (xn − 1)t(x) = a(x) in Zm[x]. If a(x) = 1, then s(x) is the
inverse of f(x). If deg(a(x)) 6= 0, one can easily prove that f(x) is not invertible
in Zm[x]/(xn− 1). Note that we must force the gcd algorithm to return a monic
polynomial.

If the computation of gcd(f(x), xn − 1) fails, we use recursion. In fact, the
gcd algorithm fails if it cannot invert an element y ∈ Zm. Inversion is done using
the integer gcd algorithm. If y is not invertible, the integer gcd algorithm returns
d = gcd(m, y), with d > 1. Hence, d is a non trivial factor of m. We use d to
compute either a pair m1,m2 such that gcd(m1,m2) = 1 and m1m2 = m, or a
single factor m1 such that m1|m and m|(m1)2. In the first case we invert f(x)
in Zm1 [x]/(xn− 1) and Zm2 [x](xn− 1), and we use Chinese remaindering to get
the desired result. In the second case, we invert f(x) in Zm1 [x]/(xn − 1) and
we use one step of Newton-Hensel lifting to get the inverse in Zm[x]/(xn − 1).
The computation of the factors m1,m2 is done by procedure GetFactors whose
correctness is proven by Lemmas 3 and 4. Combining these ideas together we
get Algorithm 2.

Lemma 3. Let α, α > 1, be a divisor of m and let α′ = gcd(m,αblog mc). Then,
α′ is a divisor of m and gcd(α′,m/α′) = 1.

Proof. Let m = pk1
1 · · · p

kh

h denote the prime factorization of m. Clearly, αblog mc

contains every prime pi which is in α, with an exponent at least ki (since
ki ≤ blogmc). Hence, α′ contains each prime pi which is in α with exponent
exactly ki. In addition, m/α′ contains each prime pj which is not in α with
exponent exactly kj , hence gcd(α′,m/α′) = 1 as claimed.

Lemma 4. Let α, β be such that αβ = m and gcd(m,αblog mc) = gcd(m,βblog mc) =
m. Then γ = lcm(α, β) = m/ gcd(α, β) is such that γ|m and m|γ2.

Proof. Let m = pk1
1 · · · p

kh

h denote the prime factorization of m. By Lemma 3 we
know that both α and β contain every prime pi, i = 1, . . . , h. Since αβ = m,
each prime pi appears in γ with exponent at least bki/2c. Hence m divides γ2

as claimed.

Theorem 3. If f(x) is invertible in Zm[x]/(xn − 1), Algorithm 2 returns the
inverse g(x) in O(Γ (m,n) logm) bit operations.

Proof. One can easily prove the correctness of the algorithm by induction on m,
the base on the induction being the case in which m is prime where the inverse
is computed by the gcd algorithm.

2 The correctness of the gcd algorithm has been proven only for polynomials over
fields, so we do not claim any property for the output of the algorithm when working
in Zm[x].

Inverse2(f(x), m)→ g(x)
{Computes the inverse g(x) of the polynomial f(x) in Zm[x]/(xn − 1)}

1. if gcd(f(x), xn − 1) = 1 then
2. let s(x), t(x) such that f(x)s(x) + (xn − 1)t(x) = 1 in Zm[x];
3. return s(x);
4. else if gcd(f(x), xn − 1) = a(x), deg(a(x)) > 0 then
5. return “f(x) is not invertible”;
6. else if gcd(f(x), xn − 1) fails let d be such that d|m;

7. let (m1, m2)← GetFactors(m, d);
8. if m2 6= 1, then
9. g1(x)← Inverse2(f(x), m1);
10. g2(x)← Inverse2(f(x), m2);
11. compute g(x) using Chinese remaindering (Lemma 1);
12. else
13. g1(x)← Inverse2(f(x), m1);
14. compute g(x) using Newton-Hensel lifting (Lemma 2);
15. endif
16. return g(x);
17. endif

GetFactors(m, d)→ (m1, m2)

18. let m1 ← gcd(m, dblog mc);
19. if (m/m1) 6= 1 then
20. return (m1, m/m1);
21. endif
22. let e← m/d;

23. let m1 ← gcd(m, eblog mc);
24. if (m/m1) 6= 1 then
25. return (m1, m/m1);
26. endif
27. let m1 ← lcm(d, e);
28. return (m1, 1);

Algorithm 2. Inversion in Zm[x]/(xn − 1). Factorization of m unknown.

To prove the bound on the number of bit operations we first consider the
cost of the single steps. By (5) we know that computing gcd(f(x), xn − 1) takes

O(Γ (m,n)) = O(Π(m,n) log n+ nµ(logm) log logm)

bit operations. By Lemma 1 we know that Chinese remaindering at Step 11 takes

O(nµ(logm) + µ(logm) log logm)

bit operations. By Lemma 2 we know that Newton-Hensel lifting at Step 14
takes O(Π(m,n)) bit operations. Finally, it is straightforward to verify that
GetFactors computes (m1,m2) in O(µ(logm) log logm) bit operations. We con-
clude that, apart from the recursive calls, the cost of the algorithm is dominated
by the cost of the gcd computation no matter which is the output of the gcd
algorithm. Hence, there exists a constant c such that the total number of bit
operations satisfies the recurrence

T (m,n) ≤ cΓ (m,n) + T (m1, n) + T (m2, n),

where we assume T (m2, n) = 0 if m2 = 1. Let m = pk1
1 · · · p

kh

h denote the
prime factorization of m. Define l(m) = k1 + k2 + · · · + kh. We now show that
T (m,n) ≤ cl(m)Γ (m,n). Since l(m) ≤ logm this will prove the theorem. We
prove the result by induction on l(m). If l(m) = 1, then m is prime and the
inequality holds since the computation is done without any recursive call. Let
l(m) > 1. By induction we have

T (m1, n) ≤ cl(m1)Γ (m1, n), T (m2, n) ≤ cl(m2)Γ (m2, n).

Since l(m1) + l(m2) = l(m), we get

T (m,n) ≤ cΓ (m,n) + c[l(m)− 1][Γ (m1, n) + Γ (m2, n)],

which implies the thesis since Γ (m1, n) + Γ (m2, n) ≤ Γ (m,n).

5 Inversion in Zm[x]/(xn − 1) when n = 2k

In this section we describe an algorithm for computing the inverse of an n × n
circulant matrix over Zm when n is a power of 2. Our algorithm is inspired by the
method of Graeffe [12] for the approximation of polynomial zeros. The algorithm
works by reducing the original problem to inversion of a circulant matrix of size
n/2. This is possible because of the following lemma.

Lemma 5. Let f(x) ∈ Zm[x] and n = 2k. If f(x) is invertible over Zm[x]/(xn−
1) then f(−x) is invertible as well. In addition, the product f(x)f(−x) contains
no odd power terms.

Inverse3(f(x), m, n)→ g(x){
Computes the inverse g(x) of the polynomial f(x) in Zm[x]/(xn − 1), n = 2k

}
1. if n = 1 then
2. if gcd(f0, m) = 1 return g0 ← f−1

0 ;

3. else return “f(x) is not invertible”;
4. else
5. let F (x2)← f(x)f(−x) mod xn − 1;
6. let G(y)← Inverse3(F (y), m, n/2);
7. let Se(x2), So(x2) be such that f(−x) = Se(x2) + xSo(x2);
8. let Te(y)← G(y)Se(y);
9. let To(y)← G(y)So(y);
10. return g(x)← Te(x2) + xTo(x2);
11. endif

Algorithm 3. Inversion in Zm[x]/(xn − 1). Requires n = 2k.

Proof. Let p be any prime factor ofm. Working in Zp[x] we have that gcd(f(x), xn−
1) = 1 implies gcd(f(−x), (−x)n − 1) = 1. Since n is even, we have (−x)n = xn

and the thesis follows by Theorem 2. To prove the second part of the lemma
let f(x) =

∑n−1
i=0 aix

i. The k-th coefficient of the product f(x)f(−x) is given
by
∑

i+j=k aiaj(−1)j . If k is odd, i and j must have opposite parity. Hence, the
term aiaj(−1)j cancels with ajai(−1)i and the sum is zero.

The above lemma suggests that we can halve the size of the original prob-
lem by splitting each polynomial in its even and odd powers. Let F (x2) =
f(x)f(−x) mod xn−1. By Lemma 5, if f(x) is invertible the inverse g(x) satisfies

F (x2)g(x) ≡ f(−x) (mod xn − 1). (6)

Now we split g(x) and f(−x) in their odd and even powers. We get

g(x) = Te(x2) + xTo(x2), f(−x) = Se(x2) + xSo(x2).

From (6) we get

F (x2)(Te(x2) + xTo(x2)) ≡ Se(x2) + xSo(x2) (mod xn − 1)

which is equivalent to

F (x2)Te(x2) ≡ Se(x2) (mod xn−1), F (x2)To(x2) ≡ So(x2) (mod xn−1).

Hence, to find g(x) it suffices to compute the inverse of F (x2) in Zm[x]/(xn− 1)
and to execute two multiplications between polynomials of degree n/2. By setting
y = x2 inverting F (x2) reduces to an inversion modulo x(n/2)− 1. Applying this
approach recursively we get Algorithm 3 for the inversion over Zm[x]/(xn − 1).

Theorem 4. Algorithm 3 executes O(Π(m,n) + µ(logm) log logm) bit opera-
tions.

Proof. The thesis follows observing that the number of bit operations T (m,n)
satisfies the following recurrence

T (m,n) =
{
µ(logm) log logm, if n = 1,
Π(m,n) + T (m,n/2) + 2Π(m,n/2), otherwise.

Note that Algorithm 3 assumes nothing about m. When m = 2 the ring Z2 does
not contain the element −1. However, we can still apply Algorithm 3 replacing
f(−x) with f(x) ([f(x)]2 does not contain odd power terms).

6 Inversion in Zm{x}

In this section we describe an algorithm for inverting a finite fps f(x) ∈ Zm{x}.
Our algorithm is based on the following observation which shows that we can
compute the inverse of f(x) inverting a polynomial over Zm[x]/(xn − 1) for a
sufficiently large n.

Let f(x) =
∑r

i=−r aix
i denote an invertible finite fps. By Corollary 3.3 in [9]

we know that the radius of the inverse is at most R = (2 logm−1)r. That is, the
inverse g(x) has the form g(x) =

∑R
i=−R bix

i. Let M be such that M > R+ r =
2r logm. Since f(x)g(x) = 1 we have

[xrf(x)][xM−rg(x)] = xM [f(x)g(x)] = xM .

Hence, to compute the inverse of f(x) it suffices to compute the inverse of xrf(x)
over Zm[x]/(xM − 1). By choosing M as the smallest power of two greater than
2r logm, this inversion can be done using Algorithm 3 in

O(Π(m, 2r logm) + µ(logm) log logm) = O(Π(m, 2r logm))

bit operations. Verifying the invertibility of f(x) using Theorem 1 takesO(rµ(logm) log logm)
bit operations, hence the cost of Algorithm 4 for inversion in Zm{x} isO(Π(m, 2r logm))
bit operations.

7 Conclusions and further works

We have described three algorithms for the inversion of an n×n circulant matrix
with entries over the ring Zm. The three algorithms differ from the knowledge of
m and n they require. The first algorithm assumes nothing about n but requires
the factorization of m. The second algorithm requires nothing, while the third
algorithm assumes nothing about m but works only for n = 2k.

We believe it is possible to find new algorithms suited for different degrees of
knowledge on m and n. A very promising approach is the following generalization
of Algorithm 3. Suppose k is a factor of n and that Zm contains a primitive k-th

Inverse4(f(x), m)→ g(x){
Computes the inverse g(x) of f(x) =

∑r

i=−r
aix

i
}

1. test if f(x) is invertible using Theorem 1;
2. if f(x) is invertible then;

3. let M = 2d2r log me;

4. let h(x)← Inverse3(xrf(x), m, M);
5. return g(x)← xr−Mh(x);
6. endif

Algorithm 4. Inversion in Zm{x}.

root of unity ω. Since f(x)f(ωx) · · · f(ωk−1x) mod xn − 1 contains only powers
which are multiples of k, reasoning as in Algorithm 3 we can reduce the original
problem to a problem of size n/k. Since the ring Zm contains a primitive p-th
root of unity for any prime divisor p of ϕ(m), we can iterate this method to
“remove” from n every factor which appears in gcd(n, ϕ(m)). From that point
the inversion procedure may continue using a different method (for example,
Algorithm 1).

Given the efficiency of Algorithm 3 it may be worthwhile even to extend
Zm adding an appropriate root of unity in order to further reduce the degree of
the polynomials involved in the computation. This has the same drawbacks we
outlined for the FFT based method. However, one should note that Algorithm 3
needs roots of smaller order with respect to the FFT method. As an example,
for n = 2k Algorithm 3 only needs a primitive square root of unity, whereas the
FFT method needs a primitive n-th root of unity.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Massachussets, 1974.

2. D. Bini and V. Y. Pan. Polynomial and Matrix Computations, Fundamental Al-
gorithms, volume 1. Birkhäuser, 1994.

3. P. Chaudhuri, D. Chowdhury, S. Nandi, and S. Chattopadhyay. Additive Cellular
Automata Theory and Applications, Vol. 1. IEEE Press, 1997.

4. P. Feinsilver. Circulants, inversion of circulants, and some related matrix algebras.
Linear Algebra and Appl., 56:29–43, 1984.

5. P. Guan and Y. He. Exacts results for deterministic cellular automata with additive
rules. Jour. Stat. Physics, 43:463–478, 1986.

6. M. Ito, N. Osato, and M. Nasu. Linear cellular automata over Zm. Journal of
Computer and System Sciences, 27:125–140, 1983.

7. A. Lempel, G. Seroussi, and S. Winograd. On the complexity of multiplication in
finite fields. Theoretical Computer Science, 22(3):285–296, February 1983.

8. A. K. Lenstra and H. W. Lenstra. Algorithms in number theory. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science. Volume A: Algorithms and
Complexity. The MIT Press/Elsevier, 1990.

9. G. Manzini and L. Margara. Invertible linear cellular automata over Zm: Algorith-
mic and dynamical aspects. Journal of Computer and System Sciences. To appear.
A preliminary version appeared in Proc. MFCS ’97, LNCS n. 1295, Springer Verlag.

10. G. Manzini and L. Margara. A complete and efficiently computable topological
classification of D-dimensional linear cellular automata over Zm. In 24th Interna-
tional Colloquium on Automata Languages and Programming (ICALP ’97). LNCS
n. 1256, Springer Verlag, 1997.

11. O. Martin, A. Odlyzko, and S. Wolfran. Algebraic properties of cellular automata.
Comm. Math. Phys., 93:219–258, 1984.

12. A. M. Ostrowski. Recherches sur la méthode de graeffe et les zéros des polynomes
et des series de laurent. Acta Math., 72:99–257, 1940.

13. A. Schönhage and V. Strassen. Schnelle Multiplikation grosse Zahlen. Computing,
7:281–292, 1971.

14. S. Takahashi. Self-similarity of linear cellular automata. Journal of Computer and
System Sciences, 44(1):114–140, 1992.

