#include "codecrypt.h" using namespace ccr; using namespace ccr::mce_qd; #include "decoding.h" #include "fwht.h" #include static uint sample_from_u (gf2m&fld, prng&rng, std::set&used) { uint x; for (;;) { x = rng.random (fld.n); if (used.count (x) ) continue; used.insert (x); return x; } } static uint choose_random (uint limit, prng&rng, std::setused) { if (used.size() >= limit - 1) return 0; //die for (;;) { uint a = 1 + rng.random (limit - 1); if (used.count (a) ) continue; used.insert (a); return a; } } int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng, uint m, uint T, uint block_discard) { priv.fld.create (m); priv.T = T; uint t = 1 << T; std::cout << "generate" << std::endl; //convenience gf2m&fld = priv.fld; std::vector&Hsig = priv.Hsig; std::vector&essence = priv.essence; std::vector&support = priv.support; polynomial&g = priv.g; //prepare for data Hsig.resize (fld.n / 2); support.resize (fld.n / 2); essence.resize (m); //note that q=2^m, algo. n=q/2, log n = m-1 //retry generating until goppa code is produced. for (;;) { std::set used; used.clear(); std::cout << "attempt..." << std::endl; //first off, compute the H signature Hsig[0] = choose_random (fld.n, rng, used); essence[m - 1] = fld.inv (Hsig[0]); //essence[m-1] is now used as precomputed 1/h_0 for (uint s = 0; s < m - 1; ++s) { uint i = 1 << s; //i = 2^s Hsig[i] = choose_random (fld.n, rng, used); essence[s] = fld.add (essence[m - 1], fld.inv (Hsig[i]) ); used.insert (fld.inv (essence[s]) ); for (uint j = 1; j < i; ++j) { Hsig[i + j] = fld.inv (fld.add (fld.inv (Hsig[i]), fld.add ( fld.inv (Hsig[j]), essence[m - 1] ) ) ); used.insert (Hsig[i + j]); used.insert (fld.inv (fld.add (fld.inv (Hsig[i + j]), essence[m - 1]) ) ); } } //from now on, we fix 'omega' from the paper to zero. std::cout << "goppa..." << std::endl; //assemble goppa polynomial. g.clear(); g.resize (1, 1); //g(x)=1 so we can multiply it polynomial tmp; tmp.resize (2, 1); //tmp(x)=x-1 for (uint i = 0; i < t; ++i) { //tmp(x)=x-z=x-(1/h_i) tmp[0] = fld.inv (Hsig[i]); g.mult (tmp, fld); std::cout << "computing g... " << g; } std::cout << "Goppa poly " << g; std::cout << "support..." << std::endl; //compute the support, retry if it has two equal elements. used.clear(); bool consistent = true; for (uint i = 0; i < fld.n / 2; ++i) { support[i] = fld.add ( fld.inv (Hsig[i]), essence[m - 1]); if (used.count (support[i]) ) { consistent = false; break; } if (g.eval (support[i], fld) == 0) { std::cout << "support zero!" << std::endl; consistent = false; break; } std::cout << "support at " << i << ": " << support[i] << std::endl; used.insert (support[i]); } if (!consistent) continue; //retry std::cout << "blocks..." << std::endl; //now the blocks. uint block_size = 1 << T, h_block_count = (fld.n / 2) / block_size; uint& block_count = priv.block_count; block_count = h_block_count - block_discard; //assemble blocks to bl std::vector bl, blp; bl.resize (h_block_count); for (uint i = 0; i < h_block_count; ++i) { bl[i].resize (block_size); for (uint j = 0; j < block_size; ++j) bl[i][j] = Hsig[i * block_size + j]; } std::cout << "permuting blocks..." << std::endl; //permute them priv.block_perm.generate_random (h_block_count, rng); priv.block_perm.permute (bl, blp); std::cout << "discarding blocks..." << std::endl; //discard blocks blp.resize (block_count); std::cout << "permuting dyadic blocks..." << std::endl; //permute individual blocks priv.block_perms.resize (block_count); bl.resize (blp.size() ); for (uint i = 0; i < block_count; ++i) { priv.block_perms[i] = rng.random (block_size); permutation::permute_dyadic (priv.block_perms[i], blp[i], bl[i]); } //try several permutations to construct G uint attempts = 0; for (attempts = 0; attempts < block_count; ++attempts) { std::cout << "generating G..." << std::endl; /* * try computing the redundancy block of G * * First, co-trace H, then compute G in form * * G^T = [I | X] * * Since H*G^T = [L | R] * [I | X] = L + R*X = 0 * we have the solution: X = R^1 * L * (thanks to Rafael Misoczki) * * Inversion is done the quasi-dyadic way: * * - because for QD matrix m=delta(h) the product * m*m = sum(h) * I, binary QD matrix m is either * inversion of itself (m*m=I) or isn't invertible * and m*m=0. sum(h), the "count of ones in QD * signature mod 2", easily determines the result. * * - Using blockwise invertions/multiplications, * gaussian elimination needed to invert the right * square of H can be performed in O(m^2*block_count) * matrix operations. Matrix operations are either * addition (O(t) on QDs), multiplication(O(t log t) * on QDs) or inversion (O(t), as shown above). * Whole proces is therefore quite fast. * * Gaussian elimination on the QD signature should * result in something like this: (for m=3, t=4) * * 1010 0101 1001 1000 0000 0000 * 0101 1100 1110 0000 1000 0000 * 0111 1110 0100 0000 0000 1000 */ priv.hperm.generate_random (block_count, rng); std::vector > hblocks; bvector tmp; bool failed; uint i, j, k, l; //prepare blocks of h hblocks.resize (block_count); for (i = 0; i < block_count; ++i) hblocks[i].resize (fld.m); //fill them from Hsig for (i = 0; i < block_count; ++i) { tmp.from_poly_cotrace (bl[priv.hperm[i]], fld); for (j = 0; j < fld.m; ++j) tmp.get_block (j * block_size, block_size, hblocks[i][j]); } /* now do a modified gaussian elimination on hblocks */ failed = false; tmp.resize (block_size); for (i = 0; i < fld.m; ++i) { //gauss step //first, find a nonsingular matrix in the column for (j = i; j < fld.m; ++j) if (hblocks[block_count - fld.m + i][j] .hamming_weight() % 2) break; if (j >= fld.m) { //none found, break; failed = true; break; } //bring it to correct position (swap it to i-th row) if (j > i) for (k = 0; k < block_count; ++k) hblocks[k][i].swap (hblocks[k][j]); //now normalize the row for (j = i; j < fld.m; ++j) { uint l = hblocks [block_count - fld.m + i] [j].hamming_weight(); if (l == 0) continue; //zero is just okay :] if (! (l % 2) ) //singular, make it regular by adding the i-th row for (k = 0; k < block_count; ++k) hblocks[k][j].add (hblocks[k][i]); //now a matrix is regular, we can easily make it I for (k = 0; k < block_count; ++k) { fwht_dyadic_multiply (hblocks[block_count - fld.m + i][j], hblocks[k][j], tmp); hblocks[k][j] = tmp; } //and zero the column below diagonal if (j > i) for (k = 0; k < block_count; ++k) hblocks[k][j].add (hblocks[k][i]); } } if (failed) continue; for (i = 0; i < fld.m; ++i) { //jordan step //normalize diagonal (it's already nonsingular) for (k = 0; k < block_count; ++k) { fwht_dyadic_multiply (hblocks[block_count - i - 1][fld.m - i - 1], hblocks[k][fld.m - i - 1], tmp); hblocks[k][fld.m - i - 1] = tmp; } //now make zeroes above for (j = i + 1; j < fld.m; ++j) { l = hblocks[block_count - i - 1] [fld.m - j - 1].hamming_weight(); if (l == 0) continue; //already zero if (! (l % 2) ) { //nonsingular, fix it by adding diagonal for (k = 0; k < block_count; ++k) hblocks[k][fld.m - j - 1].add (hblocks[k][fld.m - i - 1]); } for (k = 0; k < block_count; ++k) { fwht_dyadic_multiply (hblocks[block_count - i - 1] [fld.m - j - 1], hblocks[k][fld.m - j - 1], tmp); hblocks[k][fld.m - j - 1] = tmp; } //I+I=0 for (k = 0; k < block_count; ++k) hblocks[k][fld.m - j - 1].add (hblocks[k][fld.m - i - 1]); } } if (failed) continue; pub.qd_sigs.resize (block_count - fld.m); for (uint i = 0; i < block_count - fld.m; ++i) { pub.qd_sigs[i].resize (block_size * fld.m); for (uint j = 0; j < fld.m; ++j) pub.qd_sigs[i].set_block (hblocks[i][j], block_size * j); } break; } if (attempts == block_count) //generating G failed, retry all continue; //finish the pubkey pub.T = T; return 0; } } int privkey::prepare() { uint s, i, j; std::cout << "prepare" << std::endl; //compute H signature from essence Hsig.resize (fld.n / 2); Hsig[0] = fld.inv (essence[fld.m - 1]); for (s = 0; s < fld.m - 1; ++s) { i = 1 << s; //i = 2^s Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m - 1]) ); for (j = 1; j < i; ++j) Hsig[i + j] = fld.inv (fld.add (fld.inv (Hsig[i]), fld.add ( fld.inv (Hsig[j]), essence[fld.m - 1] ) ) ); } //compute the support support.resize (fld.n / 2); std::set used_support; for (i = 0; i < fld.n / 2; ++i) { support[i] = fld.add (fld.inv (Hsig[i]), essence[fld.m - 1]); //support consistency check if (used_support.count (support[i]) ) return 1; used_support.insert (support[i]); } //prepare permuted Hsig (so that it can be applied directly) //and prepare reverse support position lookup data uint block_size = 1 << T; uint pos, blk_perm; polynomial tmp_blk, tmp_pblk; bvector cotrace, tmp_block; std::vector sbl1, sbl2, permuted_support; tmp_blk.resize (block_size); tmp_pblk.resize (block_size); Hc.resize (fld.m); for (i = 0; i < fld.m; ++i) { Hc[i].resize (block_count); } permuted_support.resize (block_size * block_count); sbl1.resize (block_size); sbl2.resize (block_size); //go through all the blocks of original H and convert them if they //aren't discarded. for (i = 0; i < (fld.n / 2) / block_size; ++i) { pos = block_perm[i]; if (pos >= block_count) continue; //was discarded blk_perm = block_perms[pos]; pos = hperm[pos]; //permute i-th block of H to pos-th block of Hc, //also move the support. for (j = 0; j < block_size; ++j) { tmp_blk[j] = Hsig[j + i * block_size]; sbl1[j] = support[j + i * block_size]; } permutation::permute_dyadic (blk_perm, tmp_blk, tmp_pblk); permutation::permute_dyadic (blk_perm, sbl1, sbl2); //store support to permuted support for (j = 0; j < block_size; ++j) permuted_support[j + pos * block_size] = sbl2[j]; //cotrace permuted H block to Hc cotrace.from_poly_cotrace (tmp_pblk, fld); for (j = 0; j < fld.m; ++j) cotrace.get_block (j * block_size, block_size, Hc[j][pos]); } //convert the support result to actual lookup support_pos.clear(); //fld.n in support lookup means that it isn't there (we don't have -1) support_pos.resize (fld.n, fld.n); for (i = 0; i < block_size * block_count; ++i) support_pos[permuted_support[i]] = i; for (i = 0; i < support_pos.size(); ++i) { std::cout << "support " << i << " has position " << support_pos[i] << std::endl; } //goppa polynomial g.clear(); g.resize (1, 1); polynomial tmp; tmp.resize (2, 1); uint t = 1 << T; for (i = 0; i < t; ++i) { tmp[0] = fld.inv (Hsig[i]); g.mult (tmp, fld); } //sqInv g.compute_square_root_matrix (sqInv, fld); return 0; } int pubkey::encrypt (const bvector & in, bvector & out, prng & rng) { uint t = 1 << T; bvector p, g, r, cksum; uint i, j, k; /* * shortened checksum pair of G is computed blockwise accordingly to * the t-sized square dyadic blocks. */ //some checks if (!qd_sigs.size() ) return 1; if (qd_sigs[0].size() % t) return 1; uint blocks = qd_sigs[0].size() / t; cksum.resize (qd_sigs[0].size(), 0); p.resize (t); g.resize (t); r.resize (t); for (i = 0; i < qd_sigs.size(); ++i) { //plaintext block in.get_block (i * t, t, p); for (j = 0; j < blocks; ++j) { //checksum block qd_sigs[i].get_block (j * t, t, g); //block result fwht_dyadic_multiply (p, g, r); //std::cout << "DYADIC MULTIPLY: " << p << g << r << "---" << std::endl; cksum.add_offset (r, t * j); //std::cout << "CKSUM NOW: " << cksum; } } //generate t errors bvector e; e.resize (cipher_size(), 0); for (uint n = t; n > 0;) { uint p = rng.random (e.size() ); if (!e[p]) { e[p] = 1; --n; } } //compute ciphertext out = in; out.insert (out.end(), cksum.begin(), cksum.end() ); out.add (e); return 0; } int privkey::decrypt (const bvector & in, bvector & out) { if (in.size() != cipher_size() ) return 2; //multiply line-by-line block-by-block by H uint block_size = 1 << T; bvector synd_vec; bvector hp, cp, res; uint i, j, k; synd_vec.resize (block_size * fld.m); cp.resize (block_size); res.resize (block_size); for (i = 0; i < block_count; ++i) { in.get_block (i * block_size, block_size, cp); for (j = 0; j < fld.m; ++j) { fwht_dyadic_multiply (Hc[j][i], cp, res); synd_vec.add_offset (res, j * block_size); } } //decoding polynomial synd, loc; synd_vec.to_poly_cotrace (synd, fld); compute_error_locator (synd, fld, g, sqInv, loc); bvector ev; if (!evaluate_error_locator_trace (loc, ev, fld) ) return 1; //couldn't decode //TODO evaluator should return error positions, not bvector. fix it everywhere! out = in; out.resize (plain_size() ); //flip error positions of out. for (i = 0; i < ev.size(); ++i) if (ev[i]) { if (support_pos[i] == fld.n) return 1; //couldn't decode TODO is it true? if (i < plain_size() ) out[i] = !out[i]; } return 0; }