#ifndef _CODECRYPT_H_ #define _CODECRYPT_H_ #include //STL wraparound, because writing (*this)[i] everywhere is clumsy #define _ccr_declare_vector_item \ inline reference item(size_type n) \ { return (*this)[n]; }; \ inline const_reference item(size_type n) const \ { return (*this)[n]; }; namespace ccr { /* * typedefs. uint and sint should be able to comfortably hold the field * elements of underlying calculations (esp. with polynomials. Switching to * 64bits is adviseable when computing with n=64K and larger. */ typedef unsigned int uint; typedef int sint; /* * vector over GF(2). We rely on STL's vector == bit_vector * specialization for efficiency. */ class bvector : public std::vector { protected: _ccr_declare_vector_item public: uint hamming_weight(); void add (const bvector&); bool operator* (const bvector&); //dot product }; /* * pseudorandom number generator. Meant to be inherited and * instantiated by the user */ class prng { public: virtual uint random (uint) = 0; virtual void seed (uint) = 0; }; /* * matrix over GF(2) is a vector of columns */ class matrix : public std::vector { protected: _ccr_declare_vector_item public: uint width() const { return size(); } uint height() const { if (size() ) return item (0).size(); return 0; } matrix operator* (const matrix&); void mult (const matrix&); void compute_transpose (matrix&); bool compute_inversion (matrix&); void generate_random_invertible (uint, prng&); void unit (uint); }; /* * permutation is stored as transposition table ordered from zero * e.g. (13)(2) is [2,1,0] */ class permutation : public std::vector { protected: _ccr_declare_vector_item public: void compute_inversion (permutation&); void generate_random (uint n, prng&); void permute (const bvector&, bvector&); void permute (const matrix&, matrix&); void permute_rows (const matrix&, matrix&); }; /* * galois field of 2^m elements. Stored in an integer, for convenience. */ class gf2m { public: uint poly; uint n, m; bool create (uint m); uint add (uint, uint); uint mult (uint, uint); uint exp (uint, int); uint inv (uint); }; /* * polynomial over GF(2^m) is effectively a vector with a_n binary values * with some added operations. */ class polynomial : public std::vector { protected: _ccr_declare_vector_item public: void strip(); int degree() const; bool zero() const; void add (const polynomial&, gf2m&); void mod (const polynomial&, gf2m&); void mult (const polynomial&, gf2m&); polynomial gcd (polynomial, gf2m&); bool is_irreducible (gf2m&); void generate_random_irreducible (uint s, gf2m&, prng&); void compute_square_root_matrix (std::vector&, gf2m&); }; /* * classical McEliece */ namespace mce { class privkey { public: matrix Sinv; permutation Pinv; matrix h; permutation hsys; polynomial g; matrix sqInv; //"cache" int decrypt (const bvector&, bvector&); int sign (const bvector&, bvector&, uint, uint, prng&); }; class pubkey { public: matrix G; uint t; int encrypt (const bvector&, bvector&, prng&); int verify (const bvector&, const bvector&, uint, uint); }; int generate (pubkey&, privkey&, prng&); } /* * classical Niederreiter */ namespace nd { class privkey { public: // TODO int decrypt (const bvector&, bvector&); int sign (const bvector&hash, bvector&sig, uint, uint, prng&); }; class pubkey { public: matrix H; uint t; int encrypt (const bvector&, bvector&, prng&); int verify (const bvector&sig, const bvector&hash, uint, uint); }; int generate (pubkey&, privkey&, prng&); } } //namespace ccr #endif // _CODECRYPT_H_