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Abstract

We present a new algorithm for factoring polynomials over finite fields. Our algorithm is deter-
ministic, and its running time is “almost” quadratic when the characteristic is a small fixed prime.
As such, our algorithm is asymptotically faster than previously known deterministic algorithms for
factoring polynomials over finite fields of small characteristic.
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1. Introduction

Consider the problem of factoring a univariate polynomial f of degree n over the finite field F,,
where ¢ = p* and p is a small, fixed prime. We assume that F, is represented as F,(6), where
¢ is the root of an irreducible polynomial over F, of degree k. We present a new deterministic
algorithm for this problem whose asymptotic complexity is less than that of previous deterministic
algorithms.

In discussing running times of algorithms, for expositional purposes we treat p as a constant in
Sections 1 and 2 of this paper; however, in Section 4 we will make explicit the dependence of our
algorithm on p. Furthermore, we will use the “Soft-O” notation to suppress logarithmic factors in
running time estimates: we say that g = O(h) iff for some constant ¢, g = O(h(log h)®).

Besides the general factoring problem, we consider as a special case the equal degree factoring
problem, in which the input is a polynomial over F, that is the product of m distinct monic
irreducible factors, each of the same degree d. Setting d = 1, this includes as a special case the root
finding problem.

We can now state our new results more precisely:

1. We can solve the general factoring problem with a deterministic algorithm whose running

time is O((nk)?).

2. We can solve the equal degree factoring problem with a deterministic algorithm whose running

time is O(m(dk)?).

We briefly compare our algorithm to other known algorithms. In the next section, this compar-
ison is done in greater detail.

In the case where £ = 1, and we are factoring over the prime field F,, the running time O(nQ)
was previously obtained by the algorithm of the present author in [13]. The method described in
that paper does not appear to generalize to large extensions of F,.

Using linear algebra techniques, the general factoring problem can be solved in time O((nk)“),
where w is the exponent of matrix multiplication (see [15]). Currently, the best value for w is
w & 2.376 [10]. In order to achieve our running time bounds, our algorithm avoids linear algebra.

Our algorithm is actually a generalization of Berlekamp’s trace algorithm for root finding [3].
This algorithm involves the computation of many trace functions; if computed separately, the cost
of computing these trace functions would be too much. To achieve our running time bounds, we
employ a new technique for computing several trace functions in not much more time than that
required to compute just one trace function.

Finally, if probabilistic algorithms are allowed, then the running time bounds stated in Results 1
and 2 above have already been obtained with the algorithms of Ben-Or [2] and Cantor/Zassenhaus
[9]. The significance of our results is that our algorithm is deterministic.

2. Overview

In this section, we outline the main ingredients of our algorithm, along the way comparing our
algorithm with other known algorithms. We begin by summarizing some well-known facts about
the complexity of various arithmetic operations.

By a ring R we shall always mean a commutative ring with unity, and by an R-operation, we
mean addition, subtraction, or multiplication of two elements of R. For a field F', by an F-operation,
we mean addition, subtraction, multiplication, or division of two elements of F. We let M (¢) denote
the number of R-operations required to compute the product of two degree ¢t polynomials in R[X].



It is shown in [8] that M(t) = O(tlogtloglogt). We quote the following well-known results; the
proofs can be found, e.g., in [4].

Theorem 2.1. Let R be a ring, and let F be a field.

(1) Let f be a monic polynomial in R[X] of degree < t. Then with O(M(t)) R-operations we
can compute a degree t approximation to the multiplicative inverse of f in the ring of formal
power series over R.

(2) Let f and g be polynomials in R[X] of degree <t and assume that g is monic. Then f mod g
can be computed using O(M(t)) R-operations.

(3) Let f,g1,...,9x be polynomials in R[X] such that deg f < t, deggs + --- + deggr < 1,
and the g;’s are monic. Then f mod g1,..., f mod g; can be computed using O(M(t)logk)
R-operations.

(4) Let f and g be polynomials in F'[X] of degree <t. Then the greatest common divisor d of f
and g can be computed using O(M(t)logt) F-operations. Moreover, polynomials a,b € F[X]
of degree O(t) satisfying af + bg = d can be computed in the same time bound.

(5) Let a € R. Then for any integer m > 0, o™ can be computed using O(log m) multiplications
in R.

We can quickly reduce the general factoring problem to the equal degree factoring problem by
a process called distinct degree factorization. Given a polynomial f of degree n, we construct poly-
nomials f), ..., (" such that £ is the product of all the distinct monic irreducible polynomials
over F, of degree 7 that divide f. This is accomplished by using the fact that the polynomial
X9 — X is the product of all distinct monic irreducible polynomials whose degree divides i. We
refer the reader to [12] for details, and note that using fast algorithms for polynomial arithmetic,
we can perform the distinct degree factorization process in time O((nk)?).

We therefore assume that the polynomial f that we wish to factor is the product of m distinct
monic irreducible polynomials, each of degree d:

f=hfm

The degree of fis n = md.

Consider the Fg-algebra R = F [X]/(f). Let A = (X mod f) be the image X in R. By the
complexity results mentioned above, each F,-operation can be performed in time O(k), and each
R-operation can be performed in time O(mdk).

By the Chinese Remainder Theorem, for polynomials ¢ € F,[X] the map defined by

(g mod f) = (ngd flv"'vngd fm)

is an Fy-algebra isomorphism of R and the direct sum

DFJ[X]/(f) = DF,a
This isomorphism maps F, onto the diagonal, i.e. for a € Fy, a — (a,...,a). For 1 < i < m let

o — a) be the projection map of a € R onto the i-th summand R = F,[X]/(f)-
We now isolate two well-known subalgebras of R. The relative Berlekamp subalgebra B consists
of all elements a € R such that a(9) € F, for all 1 <@ < m. The Berlekamp subalgebra A consists



of all elements a € R such that o) € F, for all 1 <: < m. The following inclusion diagram helps
to describe the situation.

R

B
ARY
\, /

A set 5 C B is called a relative separating set if for all 1 < 4,7 < m with 7 # j, there exists
an element o € § such that a9 # o). If § satisfies the further condition that § C A, then  is
simply called a separating set.

Separating sets are very useful in factoring polynomials if p is small. Consider two distinct
irreducible factors f; and f; of f. If S is a separating set, then we know that for some a € 9,
ol £ o), Say al) = ¢ F,. Then if o = (g mod f), where g € F,[X], then g — a is divisible by
fi but not by f;. Therefore, given g, if we consider ged(g—46, f) for all 6 € F,,, we are guaranteed to
split f into two factors, one divisible by f;, and the other by f;. If p is small (as we are assuming)
and the size of 5§ is not too large, we can use this idea to obtain an efficient algorithm to completely
factor f.

The computation of a separating set turns out to be the bottleneck in deterministic factoring
algorithms, so we consider some of the known methods for this computation.

The oldest method goes back to Berlekamp [3]. Any F,-basis for A is clearly a separating set.
Furthermore, A is easily seen to be the kernel of the F)-linear map a — af —a. We can compute the
matrix of this linear transformation with respect to the basis {A\*0” : 0 < u < n,0 <v < k}, and
then by diagonalizing this matrix we can obtain a basis for A. The total time for this computation
is dominated by the time required to diagonalize a kn X kn matrix over F,, which is O((nk)*).

Our approach to computing a separating set begins by computing a relative separating set.

One method for computing a relative separating set, which is described by Camion [6], runs as
follows. Let Tr/p be the map that sends @ € R to a +af 4 --- + a? . So Tr/p acts on R ag
the trace from F 4 down to F, (and hence is a Fy-linear map from R onto B). In [6], it is shown
that the set {Tr/p(A*) 10 < pu < 2d} is a relative separating set.

One application of Tr/p requires O(dk) R-operations. The obvious method for computing
the elements in this relative separating set requires 2d such applications, and hence takes time
O(md’k?).

Our method for constructing a relative separating set, described in [13], is the following. Con-
sider the ring R[Y] of univariate polynomials over R. Let h = (Y =A)(Y =A%) ---(Y =X?""") € R[Y],
and write h = ho + h1Y 4+ hg_1 Y9 4 Y, In [13] it is shown that the set Sy = {h; : 0 < i < d}
(9)

is a relative separating set; this fact follows directly from the observation that £;"’ is the coefficient

of X% in 1

We can compute the powers A\, A%,..., A% with O(dk) R-operations, and then using a fast
algorithm for multiplying polynomials in R[Y], we can compute the coefficients of h with O(d)
R-operations. Thus, we can compute the elements of So in time O(m(dk)?).

Generalizing the idea of Berlekamp’s trace algorithm for root finding [3], we can use a relative



separating set S to construct a separating set S’ as follows. Let Tg/4 be the map that sends a € R
toa4+aPf +-. -—|—apk_1. TB/A acts on B9 as the trace from F, down to F, (and hence is a F,-linear
map that maps B onto A). It can easily be shown that if S is a relative separating set, then
5" ={Tpja(0a) : 0 < v < k,a € 9} is a separating set; this is a direct consequence of the fact
that for any pair of distinct elements a,b € F,, there exists v with 0 < v < k such that the trace
from F, to F, maps §”a and 6”0 onto distinct elements in F,.

We shall apply this construction to the relative separating set Sg described above to obtain a
separating set 57. An individual application of Tg/4 requires O(k) R-operations, and hence takes
time O(mdkz). The obvious method for computing 57 requires dk such applications, and hence
takes time O(md?k>).

We are now ready to describe the new idea in our algorithm. Suppose we have elements
ag,...,04_1 and fg,...,Bi—1 in some ring R. In the next section we show (Theorem 3.4) that with
O(t) R-operations we can compute all of the generalized power sums

t—1
Y= 088 (s=0,....t-1)
1=0

Now consider the problem of computing, for fixed a € Sg, the quantities TB/A(Ol’a) for 0 <
v <k For0<i<k,let# =6 and o; = a”. Then T a(0”a) is just the generalized power
sum Zf;ol 67 ;. We can clearly compute the 8;’s and «;’s using O(k) R-operations, and then using
Theorem 3.4 we can compute the the generalized power sums using O(k) R-operations. Repeating
this for each @ € S, we obtain §; with O(dk) R-operations, and hence in time O(m(dk)?).

Thus, the total time to compute the separating set 54 using our new approach is O(m(dk)z)

We close this section with a brief description of how the probabilistic algorithms of Ben-Or and
Cantor/Zassenhaus achieve a O(m(dk)?) expected running time. Consider the map Tra which

sends « € Rtoa+aP +---4+ ™' One can easily show that if we choose aq, as,--- at random
from R, then the expected value of the least ¢ such that the set {TR/A(OQ') 1 <i<t}isa

separating set is O(logm). Since the time required to compute T 4 once is O(m(dk)?), this leads

to an algorithm whose expected running time is O(m(dk)?).

3. Computing generalized power sums

In this section, we consider the following problem: given aq,...,a;—1 and Fg,...,5;—1 in a ring R,
compute the generalized power sums

t—1
75:Zafﬁi (s=0,...,t—1).
=0

We shall present an algorithm for this problem that requires O(M(t)logt) R-operations, and
space for O(t) elements in R. There are a couple of other methods in the literature for solving this
problem, which we discuss at the end of this section.

We will first need an algorithm for extending a linear recurrence sequence.

Theorem 3.1. Let R be a commutative ring with unity. Suppose we are given elements cq, ..., ¢;
and yg,...,7t—1 in R. For s >t let 75 be defined by the recurrence

Vs + C17Ys—1 +---+ CtYs—t = 0. (32)



We can compute 7y, . ..,72:—1 using O(M(t)) R-operations.

Proof. Let ¢g = 1. We define the following polynomials.
t .
G = Z c; X7
7=0
i—1 4
U = Z’ij]
7=0

t—1
Vo= )y XY
j=0

We then consider the products

2t—1 4
GU = Z u; X7
=0

2t—1 4
GV = Z v; X7
7=0

Calculating the coefficients of these products, and using (3.2), one finds that

We can rewrite this as follows. Let GU = Fy + X'F;, where Fy and F| are polynomials of degree
at most ¢ — 1. Then we can rewrite (3.3) as

GV = —F (mod XY).
Let H be the multiplicative inverse of (G in the ring of formal power series over R. Then we have
= —HF (mod X).
Thus, to compute the coefficients of V' (which are the quantities we desire), we do the following:
1. Compute a degree ¢ polynomial approximation H* of H.
2. Compute F; by computing the product GU, and throwing away the low order ¢ terms.
3. Compute —H*Fy, and throw away the high order n terms.
Since each step of this algorithm uses O(M(t)) R-operations, so does the entire algorithm. O

We now come to our algorithm for computing generalized power sums.

Theorem 3.4. Let R be a commutative ring with unity. Suppose we are given elements ag, .

<oy Q1
and fBg,...,0:—1 in R. For s > 0 let

t—1
s
Vs = Z a; Bi.
=0



We can compute 7, . ..,7:—1 using O(M(t)logt) R-operations.

Proof. We assume that ¢ is a power of 2 (otherwise, pad with zeros). Consider the polynomial
G = (1 —OéoX)"'(l - Oét_lX).
Let
t .
G = Z c; X7
=0
and let .
G = th_ij = (X —ag) (X —a_q).
=0

Claim. For s > t, we have
Vst e1Vs—1 + o+ eys—e = 0.

This claim can be seen as follows.

t
> CiVs-j =
j=0

t—1

Y al™l B (by definition)

]~

=0 =
t—1 ¢

= Y a8y ejai
=0 7=0
t—1 )

= ol 'piG(a)
=0

= (since each a; is a zero of &)

With this claim and Theorem 3.1, we see that given g, ...,7;—1, and given the coefficients of

G/, we can compute 7y, ..., v2¢—1 using O(M(t)) R-operations.
Consider the following recursive algorithm to compute generalized power sums. For convenience,
the role of ¢ is now played by 2¢t. The input is aqg,...,a9—1 and Gy, ..., O2¢_1. The output is

2t—1

’}/SIZafﬁi (8:0,...,2t—1)

=0
and the coefficients of the polynomial
G = (1 - OéoX) . (1 - Oégt_lX).
1. Divide the problem into two equal sized pieces, and recursively compute the following quan-
tities:
o Y =10 (s=0,...,t-1)
o the coefficients of G' = (1 — apX)---(1 — 41 X)

o /=00 el (s=0,...,0—-1)
o the coefficients of G = (1 — oy X) -+ (1 — g1 X)



2. Extend the length ¢ sequences v, and 7/ to the corresponding sequences of length 2t using
the coefficients of G’ and G, and the algorithm of Theorem 3.1.

3. For s =0,...,2t — 1, set 75 = v, + 7Y, and compute the coefficients of G = G'G".

The number of R-operations performed by this algorithm is determined by the recurrence

~
~~
[\
o~
~—
Il

2T (1) + O(M(1))
T(1) = 0().

which has the solution

T(t) = O(M(t)log?).

We can rephrase the problem of computing generalized power sums by saying that we want to
compute the matrix-vector product V7' 'z, where V is the Vandermonde matrix V = (af:ll) and x
is the column vector = (f;_1).

We mention two other methods for solving this problem. One is described in [7], where it is
assumed that R is a field and that the a;’s are distinct. It has the same time and space complexity
as ours. This algorithm works by first computing y = V', and then applying the Hankel matrix
VTV to y. The use of this algorithm over an arbitrary ring R is hindered by the fact that it
performs several divisions by elements in R, and it is not clear that these can easily be avoided.

There are general methods by which one can transform an algorithm for computing the matrix-
vector product Az into an algorithm with the same asymptotic running time for computing A’z
[1, 11]. Since computing Va is known to take O(M (¢)logt) R-operations, the same bound ap-
plies to computing V72, The algorithms that result from these general transformations are quite
“unnatural,” and moreover, require space proportional to their running times.

Either of these methods would have sufficed in proving the main result of this paper; however,
our algorithm is still perhaps of interest in itself, since it avoids divisions, requires space for only
O(t) R-elements, and has a fairly simple and natural description.

4. Algorithmic Details

In this section we supply the remaining details of our factoring method. In analyzing the running
time, we make explicit the dependence on p. Running times are measured in terms of F,-operations.

Our factoring algorithm proceeds as follows.

First, we reduce the general factoring problem to the equal degree factoring problem by first
performing distinct degree factorization. This can be done with log p - O((nk)?) F,-operations (see
[12]). We therefore assume that f is the product of m distinct monic irreducible polynomials of
degree d. All of the notation and terminology introduced in Section 2 is now in force.

Second, we compute the separating set 57 described in Section 2. Using the methods described
there, this takes log p - O(m(dk)?) F,-operations.

Third, we apply the following factorization procedure that takes as input the polynomial f and
a corresponding separating set 5. The output is the set of irreducible factors of f. We construct
finer and finer partial factorizations U C F,[X] consisting of monic polynomials with [],cp v = f.

Initially, U = {f}.



while |U| < m do
Choose s € §, and then remove s from 5
06—0
while Test(U, s) do
Refine(U,s +6)
if p# 2 then Refine(U,(s+6)P=D/2 1)
b—064+1

The factorization procedure makes use of two subroutines. The first is the operation
Refine(U,v), which, given a partial factorization U and a polynomial v € F,[X], replaces U
by the refinement U’ obtained in the following fashion: for each u € U, if ged(u,v) is a trivial
divisor of w, put w in U’; otherwise, put ged(u,v) and w/ged(u,v) in U’. For polynomials v of
degree less than n, we can perform the Re fine operation using (j(mdk) F,-operations. The second
operation is T'est(U, v), which returns true if (v mod u) ¢ F, for some u € U, and false otherwise.
The value of T'est(U,v) indicates whether v is of any use in obtaining a further refinement of U.
This can also be computed using O(mdk) F,-operations.

To analyze the running time of this algorithm, for an odd prime p we define the quantity B(p)
as follows: let y be the quadratic character on F,, and as @ and b range over all pairs of distinct
elements in F,,, let B(p) be the maximum value of B such that x(a+¢) = x(b+¢) for 0 < é < B.
For p = 2, define B(p) = 1.

Since we are using the separating set 57, which contains dk elements, the number of F,-
operations used by our factorization procedure is easily seen to be bounded by

log p - O(m(dk)?) + B(p)logp - O(mdk - min(m, dk)).

In [13] it was shown that B(p) = O(p'/?logp). Tt was subsequently shown in [14] that B(p) =
O(p*/?).

Putting all of this together, we can state our results as follows:

Theorem 4.1.

1. We can solve the general factoring problem using
logp - O((nk)*) + p'/*log p - O((nk)*/?)
F,-operations.
2. We can solve the equal degree factoring problem using
log p - O(m(dk)?) + p*/*log p - O(mdk - min(m, dk))
F,-operations.

Remark. Several authors have fallaciously drawn the inference that the fact that the maximum
number of consecutive quadratic residues or nonresidues mod p is O(p1/4 log p) (see [5]) implies that
polynomials over a finite field of characteristic p can be factored in time proportional to p'/4 times
a polynomial in the input size. The relevant quantity is not the number of consecutive quadratic
residues or nonresidues, but rather the quantity B(p) defined above; the author is not aware of any
bounds on B(p) better that O(p'/?). Improving this bound is an important open problem.
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