
Decoding square-free Goppa codes over Fp

Paulo S. L. M. Barreto1?, Richard Lindner2, and Rafael Misoczki1

1 Departamento de Engenharia de Computação e Sistemas Digitais (PCS),
Escola Politécnica, Universidade de São Paulo, Brazil.

{pbarreto,rmisoczki}@larc.usp.br
2 Department of Computer Science,

Technische Universität Darmstadt, Germany.
rlindner@cdc.informatik.tu-darmstadt.de

Abstract. We propose a new, efficient decoding algorithm for square-
free (irreducible or otherwise) Goppa codes over Fp for any prime p.
If the code in question has degree t and its average code distance is
at least (4/p)t + 1, the proposed decoder can uniquely correct up to
(2/p)t errors with high probability. The correction capability is higher
if the distribution of error magnitudes is not uniform, approaching or
reaching t errors when any particular error value occurs much more
often than others or exclusively. This makes the method interesting for
(semantically secure) cryptosystems based on the decoding problem for
permuted and punctured Goppa codes.

Keywords: coding theory, error correction, efficient algorithms,
coding-based cryptosystems

Mathematics Subject Classification (2000): 94A60, 14G50, 94B35

1 Introduction

Public-key cryptosystems based on coding theory, known for nearly as long as
the very concept of asymmetric cryptography itself, have recently been attract-
ing renewed interest because of their apparent resistance even against attacks
mounted with the help of quantum computers, constituting a family of so-called
post-quantum cryptosystems [4]. However, not all error-correcting codes are suit-
able for cryptographic applications. The most commonly used family of codes
for such purposed is that of Goppa codes, which remain essentially unharmed
by cryptanalysis efforts despite considerable efforts and progress in the area.

Goppa codes [9] were introduced in 1970 as a subfamily of Generalized Reed-
Solomon codes, which in turn are subfield subcodes of alternant codes. Let
q = pm for some prime p and some m > 0. A Goppa code Γ (L, g) over Fp is
determined by a sequence L ∈ Fnq of distinct values, and a polynomial g ∈ Fq[x]
whose roots are disjoint from L. Goppa codes have by design a minimal distance
? Supported by the Brazilian National Council for Scientific and Technological Devel-
opment (CNPq) under research productivity grant 303163/2009-7.

at least deg(g)+1 by virtue of being alternant. Certain codes are known to have
better minimum distances than this lower bound. Thus, binary Goppa codes
where g is square-free are known to have a larger minimum distance of at least
2 deg(g) + 1 instead. A family of codes where g is not square-free have minimum
distance at least deg(g) + γ − 1 for some 2 < γ < deg(g) − 1, which is known
as the Hartmann-Tzeng bound for Goppa codes [16]. Codes where g = hr−1 for
some irreducible monic polynomial h ∈ Fq[x] and some power r of p dividing
q, dubbed “wild” codes [5], have minimum distance at least r deg(h) + 1 rather
than (r−1) deg(h)+1 [20]. Determining the true minimum distance of a general
Goppa code remains largely an open problem, yet it is an important metric as
it determines not only how many errors can always be uniquely corrected, but
indirectly the security level and the key sizes of the cryptosystems based on each
given code.

Apart from brute force, known decoding methods for alternant codes can in
general correct only about half as many errors as a binary square-free Goppa
code is in principle able to correct [1, 19] (see also [11]). Even the Guruswami-
Sudan algorithm [10], which exceeds the t/2 limit, can only correct about
n−

√
n(n− t) ≈ t/2 + (t/2)2/(2n− t) errors. In contrast, Patterson’s algorithm

can correct all t design errors of binary Goppa codes, as can an alternant decoder
using the equivalence Γ (L, g) = Γ (L, g2) albeit at a larger computational cost.
Bernstein’s list decoding method [3] goes somewhat further, attaining a correc-
tion capability of n −

√
n(n− 2t− 2) ≈ t + 1 + (t + 1)2/2(n − t − 1) errors for

binary irreducible Goppa codes, although decoding is ambiguous if the actual
distance is not proportionally higher. Similar techniques can in principle correct
about n−

√
n(n− rt) ≈ rt/2 + (rt/2)2/(2n− rt) errors for wild codes [5].

Our contribution in this paper is a decoding algorithm for square-free (irre-
ducible or otherwise) Goppa codes over Fp for any prime p. The method gener-
alizes Patterson’s approach and can potentially correct up to (2/p)t errors, on
the condition that a suitable short vector can be found in a certain polynomial
lattice. In particular, our method corrects (2/3)t errors in characteristic 3, ex-
ceeding the t/2 barrier when the average code distance is at least (4/3)t+1. The
correction is observed to be unique with overwhelming probability for irreducible
ternary Goppa codes chosen uniformly at random, hinting that the average (as
opposed to the minimum) code distance is high enough for the vast majority
of such codes. Besides, our proposal can probabilistically correct a still larger
number of errors that approaches and reaches t depending on the distribution
of error magnitudes. For instance, the method corrects up to t errors with high
probability if all error magnitudes are known to be equal.

This feature outperforms even wild codes and the associated decoding meth-
ods described in [5], and is particularly interesting for cryptographic applications
like McEliece encryption [12] under the Fujisaki-Okamoto or similar semantic se-
curity transform [8], where error magnitudes can be chosen by convention to be
all or nearly all equal. In that case, even if an attacker could somehow derive a
generic alternant decoder from the public code that is typical in such systems
(a strategy exploited e.g. in [7]), he will not be able to correct more than about

2

t/2 errors out of roughly t that can be corrected with the private trapdoor en-
abled by our proposal, facing an infeasible workload of

(
n
t/2

)
/
(
t
t/2

)
guesses to

mount a complete attack. This makes Goppa codes in odd characteristic, which
have already been shown to sport some potential security advantages over binary
ones [18], even more attractive in practice.

The remainder of this document is organized as follows. We provide theoret-
ical preliminaries in Section 2. We recapitulate Patterson’s decoding algorithm
for binary irreducible Goppa codes in Section 3, and extend it to square-free
codes in characteristic p in Section 4, showing that it can correct (2/p)t errors
in general and up to t errors depending on the distribution of error magnitudes.
We conclude in Section 5.

2 Preliminaries

2.1 Error correcting codes

Let p be prime and q = pm for some m > 0. Let L = (L0, . . . , Ln−1) ∈ Fnq be a
sequence (called the support) of n 6 q distinct elements, and let g ∈ Fq[x] be an
irreducible monic polynomial of degree t such that g(Li) 6= 0 for all i. For any
word e ∈ Fnp we define the corresponding Goppa syndrome polynomial se ∈ Fq[x]
to be:

se(x) =
n−1∑
i=0

ei
x− Li

mod g(x).

Thus the syndrome is a linear function of e. The [n, n − mt,> 2t + 1] Goppa
code over Fp with support L and generator polynomial g is the kernel of the
syndrome function, i.e. the set Γ (L, g) := {e ∈ Fnp | se ≡ 0 mod g}.

Writing se(x) :=
∑
i six

i for some s ∈ Fnq , one can show that sT = HeT with

H =

gt 0 . . . 0
gt−1 gt . . . 0
...

...
. . .

...
g1 g2 . . . gt

 ·

1 1 . . . 1
L0 L1 . . . Ln−1

L2
0 L2

1 . . . L2
n−1

...
...

. . .
...

Lt−1
0 Lt−1

1 . . . Lt−1
n−1

 ·

1
g(L0)

0 . . . 0

0
1

g(L1)
. . . 0

...
...

. . .
...

0 0 . . .
1

g(Ln−1)

(1)

Thus H = TV D where T is a t× t Toeplitz matrix, V is a t× n Vandermonde
matrix, and D is an n× n diagonal matrix.

The syndrome decoding problem consists of computing the error pattern e
given its syndrome se. Knowledge of the code structure in the form of the support
L and the polynomial g makes this problem solvable in polynomial time, with
some constraints relating the weight of e to the degree of g.

3

2.2 Polynomial lattices

Let A ∈ Fq[x]n×m be a polynomial matrix of rank r. The (polynomial) lattice
Λ(A) over Fq[x] spanned by the rows of A is

Λ(A) = {(u0, . . . , un)A ∈ Fq[x]m | (u0, . . . , un) ∈ Fq[x]n}.

The notion of length which we will use for f ∈ Fq[x] is |f | = deg(f). For
polynomial vectors v ∈ Fq[x]k we adopt the notion of maximal degree length:
|v| = maxi |vi|. This notion is coarse enough that, contrary to integer lattices
where finding even an approximation to the shortest vector by a constant factor
is a hard problem [14], reducing a basis for a polynomial lattice can be achieved
in polynomial time. The following result by Mulders and Storjohann holds [15]:

Theorem 1. There exists an algorithm which finds the shortest nonzero vector
in the Fq[x]-module generated by the rows of A with O(mnrd2) operations in Fq,
where d = max{deg(Aij) | 1 6 i 6 n, 6 j 6 m}.

The algorithm whose existence is established by Theorem 1 is based on con-
verting a given lattice basis to the so-called weak Popov form, formally defined
in Appendix A. Accordingly, we will refer to it as WeakPopovForm. Interest-
ingly, the actual complexity of WeakPopovForm for the kind of lattices we
will encounter is lower than the estimate provided by Theorem 1. Appendix A
also contains a description of the WeakPopovForm algorithm and its cost
behaviour in the context of decoding.

3 Patterson’s decoding method

We briefly recapitulate Patterson’s decoding algorithm [17], which will provide
the basis for the general algorithm we propose. The goal, of course, is to compute
the error pattern e given its syndrome se and the structure of Γ (L, g).

Let q = 2m, and assume we are given a binary Goppa code Γ (L, g) where the
monic polynomial g is irreducible. We define the Patterson locator polynomial
σ ∈ Fq[x] as:

σ(x) :=
∏
ei=1

(x− Li). (2)

The name locator polynomial comes from the fact that the roots of σ clearly
indicate where errors occurred, since σ(Lj) = 0 ⇔ ej = 1. Lifting to Fq(x) we
obtain

σ′(x) =
∑
ei=1

∏
ej=1
j 6=i

(x− Lj) =
∑
ei=1

1
x− Li

∏
ej=1

(x− Lj) = σ(x)
∑
i

ei
x− Li

,

and hence, in Fq[x]/g(x),

σ′(x) = σ(x)se(x) mod g(x). (3)

4

This is called the key equation. It only determines σ′ mod g (up to a constant
factor that is chosen to make σ monic), but if the number of errors is restricted
not to exceed t, deg(σ′) is guaranteed to be bound by t−1 and hence σ′ mod g =
σ′. By integration, σ is determined up to an arbitrary squared polynomial, i.e.
σ = σ0 + h2 for some h where σ0 is the unique primitive of σ0 that is free
of squared terms. But since we require that deg(σ) 6 t, necessarily deg(h) 6
bt/2c < t, and hence h itself (rather than only h mod g) is uniquely determined
as well. This means that the whole σ of degree up to t is uniquely determined,
enabling the correction of t errors.

Being a binary polynomial, σ(x) modulo g(x) can be written as

σ(x) = a0(x)2 + xa1(x)2

for some a0(x), a1(x) with deg(a0) 6 bt/2c and deg(a1) 6 b(t−1)/2c, and hence

σ′(x) = 2 a0(x) a′0(x) + a1(x)2 + 2 a1(x) a′1(x)x = a1(x)2,

since the characteristic is 2. Therefore

a1(x)2 = σ′(x) = σ(x)se(x) =
(
a0(x)2 + xa1(x)2

)
se(x) mod g(x),

whence
a0(x) = a1(x)

√
x+ 1/se(x) mod g(x). (4)

The last equation is actually a Bézout relation a0(x) = a1(x)v(x) +λ(x)g(x)
with v(x) :=

√
x+ 1/se(x) mod g(x), which can be solved for a0(x) and a1(x)

with the restriction deg(aj) 6 b(t−j)/2c (and also λ(x) but it is not used) using
the extended Euclidean algorithm. Solutions (a0, a1) can also be seen as short
vectors in the lattice spanned by the rows of the following matrix:

A =
[
g 0
v 1

]
in the sense that the degrees of these polynomials are much smaller than uni-
formly random vectors, since (λ, a1)A = (λg + a1v, a1) = (a0, a1) for some
λ ∈ Fq[x], by virtue of Equation 4. Therefore, algorithm WeakPopovForm
can be used to find candidate solutions (a0, a1).

At first glance there is no guarantee that a short vector in the lattice gener-
ated by A yields the desired solution; in other words, being short is a necessary
condition, but in principle not a sufficient one. However, the fact that in the
binary case the minimum code distance is known to be at least 2t + 1 actually
restricts σ to a single candidate, so that algorithm WeakPopovForm is bound
to find it. Thus, decoding is always successful up to t introduced errors.

4 Decoding codes over Fp

We now show how to generalize Patterson’s decoding algorithm so as to correct
errors for codes defined over general prime fields. Thus, let q = pm for some

5

prime p and some m > 0, and assume we are given an irreducible Goppa code
Γ (L, g) over Fp.

Let φ ∈ Fp \{0} be a constant scalar. We define the generalized error locator
polynomial to be

σ(x) :=
∏
i

(x− Li)ei/φ, (5)

where the value ei/φ is lifted from Fp to Z (i.e. to the corresponding integer
representative in range 0 . . . p− 1) upon exponentiation. One can easily see that
this definition actually coincides with Patterson error locator polynomials as
defined by Equation 2 for p = 2. Lifting Equation 5 to Fq(x) and taking the
derivative, we have

σ′(x) =
∑
j

(ej/φ)(x− Lj)ej/φ−1
∏
i 6=j

(x− Li)ei/φ

= (1/φ)
∑
j

ej
x− Lj

∏
i

(x− Li)ei/φ

= (1/φ)σ(x)
∑
j

ej
x− Lj

,

which over Fq[x] reduces to

φσ′(x) = σ(x)s(x) mod g(x). (6)

This is the key equation of the proposed method, which generalizes Patterson’s
decoder to Goppa codes over Fp. The actual φ must be chosen so as to minimize
the degree of σ (and hence maximize the number of correctable errors). One
cannot expect to know a priori the value of φ, but since there are only p − 1
possibilities, the error correction strategy will be to try each of them in turn.

As in the binary case, solving Equation 6 with the right φ only determines
σ′ mod g (up to a constant factor that is chosen to make σ monic), but this
remainder coincides with σ′ by imposing the restriction that deg(σ′) be less than
t. By integration, σ is determined up to an arbitrary p-th power, i.e. σ = σ0 +hp

for some h where σ0 is the unique primitive of σ0 that is free of p-th power
terms. But since we require that deg(σ) 6 t, necessarily deg(h) 6 bt/pc < t, and
hence h itself (rather than only h mod g) is uniquely determined as well. This
means that the whole σ of degree up to t is uniquely determined. Notice that the
maximum number of correctable errors can be, and usually is, less than t, since
the degree of σ exceeds the number of roots in the presence of multiple roots.

Indeed, let w denote the maximum number of actually correctable errors, and
let wv denote the number of times the magnitude v occurs in an error pattern of
weight w, so that

∑
v wv 6 w. The constraint for correctability is thus deg(σ) =∑

v (v/φ)wv 6 t. In the extreme situation when the weight of the error pattern
reaches w, the most often error magnitude occurs wmax > w/(p − 1) times,
attaining the lower bound when all error magnitudes occur with equal frequency.
In that case, deg(σ) 6

∑
v (v/φ)wmax = (1+2+· · ·+(p−1))w/(p−1) = wp/2 6 t,

6

and hence the maximum number of errors that can be corrected independently
of the distribution of magnitudes is w = (2/p)t.

Since the method coincides with Patterson’s for p = 2, it is not surprising
that t errors can be corrected in that case. However, in characteristic 3 the
number of potentially correctable errors is (2/3)t, exceeding the limit of t/2
errors attainable by previously known decoding methods for codes of degree
t except when the Goppa polynomial is a (p − 1)-th power of an irreducible
polynomial (our method, by contrast, applies when that polynomial is square-
free, as we will see in Section 4.1).

Despite the low general limit of (2/p)t correctable errors for p > 3, it is still
possible to exceed that limit in any odd characteristic if the distribution of error
magnitudes is unbalanced. Indeed, all that is required to get a chance of uniquely
decoding a word containing w 6 t errors is that deg(σ) 6 t for some choice of φ
and that the actual distance from the right codeword to any other codeword be
at least 2w+ 1. If the code is not equidistant, this possibility remains open even
when the minimum code distance is not high enough.

The actual number of correctable errors depends heavily on the distribution
of error magnitudes and has to be computed in a case-by-case basis, always laying
in the range (2/p)t to t. In particular, if all error magnitudes are equal, up to t
errors can be corrected. This is especially useful for cryptographic applications
involving an all-or-nothing transform, as it happens e.g. for a semantically secure
encryption scheme involving the McEliece one-way trapdoor function [12] and
the Fujisaki-Okamoto conversion [8]. In such scenarios, the magnitudes of the
introduced errors can be chosen to be all or nearly all equal by convention,
making the proposed decoder attractive for its higher decodability bound.

4.1 Solving the key equation

We now focus on actually solving Equation 6. Being a polynomial in character-
istic p, σ(x) can be written as

σ(x) =
p−1∑
k=0

xkak(x)p (7)

for some ak(x) with deg(ak) 6 b(t− k)/pc, 0 6 k 6 p− 1, and hence

σ′(x) =
p−1∑
k=0

(
kxk−1ak(x)p + pxkak(x)p−1a′k(x)

)
=

p−1∑
k=1

kxk−1ak(x)p

since the characteristic is p. Therefore

φ

p−1∑
k=1

kxk−1ak(x)p = φσ′(x) = σ(x)se(x) =

(
p−1∑
k=0

xkak(x)p
)
se(x) mod g(x),

whence

a0 +
p−1∑
k=1

ak(x)vk(x) = 0 mod g(x) (8)

7

where vk(x) := p
√
xk + φkxk−1/se(x) mod g(x). This Diophantine equation has

to be solved for ak(x) with the stated restriction on the degrees. Solutions
(a0, a1, . . . , ap−1) can be seen as short vectors in the lattice spanned by the
rows of the matrix

A =

g 0 0 . . . 0
−v1 1 0 . . . 0
−v2 0 1 . . . 0
...

...
...
. . .

...
−vp−1 0 0 . . . 1

 , (9)

since (λ, a1, . . . , ap−1)A = (λg −
∑p−1
k=1 ak(x)vk(x), a1, . . . , ap−1) =

(a0, a1, . . . , ap−1) for some λ ∈ Fq[x], by virtue of Equation 8. Therefore,
algorithm WeakPopovForm can be used to find candidate solutions
(a0, . . . , ap−1).

The method is applicable whenever one can actually invert s mod g and then
compute the p-roots needed to define the vk polynomials. This is always the case
when g is irreducible, but not exclusively so. Indeed, to compute the vk it suffices
that g is square-free and that s is invertible modulo each of the irreducible factors
of g, since in this case the vk can be easily computed modulo those irreducible
factors and finally recovered via the Chinese Remainder Theorem (see e.g. [13,
Algorithm 2.121]).

Theorem 1 predicts a cost of O(p3t2) Fq operations for computing short
vectors in Λ(A). However, as discussed in Appendix A the actual cost for the
particular structure of A is only O(p2t2) Fq operations.

4.2 Estimating the success probability

Regrettably the ability to find shorts vectors in lattice Λ(A) does not mean
that any such vector yields a solution to Equation 6. We will now see that,
fortunately, the proposed method has a surprisingly favourable probability of
finding the right (a0, . . . , ap−1) that solves Equation 6.

In a successful decoding, the reduced basis for lattice Λ(A) leads to candidates
for σ with degree t onward, of which of course only the candidate with the
smallest degree is the correct one. Spurious candidates of degree close to t result
from random-looking short (albeit not shortest) vectors in the reduced basis and
are usually harmless. But the fact that those short vectors are “random-looking”
means they are also a threat: if by chance they are such that the coefficient of
the highest-degree term in the associated spurious σ vanishes, deg(σ) becomes
t or less. Since this is connected with the vanishing of a coefficient from Fq, this
event happens with probability 1/q assuming that short spurious vectors in Λ(A)
are approximately uniformly distributed.

In general, when trying to correct w < t errors of equal magnitude for a
uniformly random irreducible code, the top t+ 1−w coefficients in the spurious
σ must vanish to interfere with the decoding process, whence the probability of
successful decoding is roughly 1 − 1/qt+1−w. This matches the empirically ob-
served behaviour of the proposed method in odd characteristic. Not surprisingly,

8

the method always succeeds for binary codes, since it reduces to Patterson’s al-
gorithm and the minimum code distance is known to be at least 2t+ 1.

The probability of decoding w 6 t′ := (2/p)t errors of uniformly random
magnitude for a uniformly random irreducible code is better still. Failure occurs
if the top t′ + 1 − w coefficients in spurious σ polynomials vanish for all of the
p − 1 values of φ, since each of them can now lead to a valid σ. Thus, success-
ful decoding happens with probability at least 1 − (1/qt

′+1−w)p−1, unless t′ is
already smaller than the minimum code distance in which case decoding is un-
conditionally successful. Therefore, the success probability is 1−(1/q(2/3)t+1−w)2

in characteristic 3 and simply 1 for p > 3 as the minimum distance is known
beforehand to exceed (4/p)t+1, namely, it is at least t+1, and hence the method
always yields a correct decoding.

4.3 Computing the error magnitudes

In contrast to generic alternant decoding methods, there is no need to compute
an error evaluator polynomial to obtain the error magnitudes in the current
proposal. After obtaining σ(x) and finding its roots Lj , all that is needed to
compute the corresponding error values ej is to determine the multiplicity µj of
each root, since one can see from Equation 5 that ej = φµj .

Computing µj is accomplished by determining how many times (x−Lj) | σ(x)
whenever σ(Lj) = 0, or alternatively by finding the highest derivative of σ such
that σ(h)(Lj) = 0 (and setting µj ← h).

Since the value of φ is not known a priori, and even in scenarios where it is
actually known beforehand, an additional syndrome check is necessary for each
guessed φ, and the process usually must check all possible values of φ anyway
since more than one solution may exist.

4.4 The completed decoder

We are finally ready to state the full decoding method explicitly in Algorithm 1.
The polynomial decomposition of Equation 7 immediately suggests a simple and
efficient way to compute the p-th roots needed at Step 12, namely, precompute
r(x) ← p

√
x mod g(x) and r(x)k mod g(x), and then compute the p-th root of

z(x) :=
∑
k x

kzk(x)p as p
√
z(x) mod g(x)←

∑
k r(x)kzk(x). The tests in Steps 2

and 9 are unnecessary if g is irreducible. To find the zeroes of σ in Step 24 one
can use the Chien search [6], in which case the multiplicities of each root can be
determined as part of the search, or the Berlekamp trace algorithm [2].

5 Conclusion

We described a new decoding algorithm for square-free (in particular, irre-
ducible) Goppa codes of degree t over Fp that can correct (2/p)t errors in general,
and up to t errors for certain distributions of error magnitudes of cryptographic
interest. By attaining an correction capability of (2/3)t errors in characteristic 3

9

Algorithm 1 Decoding p-ary square-free Goppa codes
Input: Γ (L, g), a Goppa code over Fp where g is square-free.
Input: H ∈ Fr×n

q , a parity-check matrix in the form of Equation 1.
Input: c′ = c+ e ∈ Fn

p , the received codeword with errors.
Output: set of corrected codeword c ∈ Γ (L, g) (∅ upon failure).
1: sT ← Hc′T ∈ Fn

q , se(x)←
∑

i six
i. . N.B. Hc′T = HeT.

2: if @ s−1
e (x) mod g(x) then

3: return ∅ . this can only happen if g(x) is composite
4: end if
5: S ← ∅
6: for φ← 1 to p− 1 do . guess the correct scale factor φ
7: for k ← 1 to p− 1 do
8: uk(x)← xk + φkxk−1/se(x) mod g(x)
9: if @ p

√
uk(x) mod g(x) then

10: try next φ . this can only happen if g(x) is composite
11: end if
12: vk(x)← p

√
uk(x) mod g(x)

13: end for
14: Build the lattice basis A defined by Equation 9.
15: Apply WeakPopovForm (Algorithm 2) to reduce the basis of Λ(A).
16: for i← 1 to p do
17: a← Ai . with aj component indices numbered in range 0 . . . p− 1
18: for j ← 0 to p− 1 do
19: if deg(aj) > b(t− j)/pc then
20: try next i . not a solution
21: end if
22: end for
23: σ(x)←

∑
j x

jaj(x)p

24: Compute the set J such that σ(Lj) = 0, ∀j ∈ J .
25: for j ∈ J do
26: Compute the multiplicity µj of Lj .
27: ej ← φµj

28: end for
29: if HeT = sT then
30: S ← S ∪ {c′ − e}
31: end if
32: end for
33: end for
34: return S

10

with high probability, our method outperforms the best previously known de-
coder for that case, and suggests that the corresponding average distance is at
least (4/3)t+1 for most irreducible ternary Goppa codes. Regardless of the char-
acteristic, our proposal can correct a still larger number of errors that approaches
and reaches t as the distribution of error magnitudes becomes ever more skewed
toward the predominance of some individual value. The method can be viewed
as generalizing Patterson’s binary decoding procedure, and is similarly efficient
in practice.

A further increase in the number of correctable errors may be possible by
resorting to list decoding and by extracting more information from the decoding
process along the lines proposed by Bernstein [3]. This in principle might enable
the correction of approximately n−

√
n(n− (4/p)t) errors in general, and possi-

bly as many as n−
√
n(n− 2t− 2) errors depending on the distribution of error

magnitudes. Furthermore, the ability to correct close to t errors with high proba-
bility means that smaller keys might be adopted for coding-based cryptosystems.
Properly chosen parameters would keep the probability of decoding failure be-
low the probability of breaking the resulting schemes by random guessing, while
maintaining the security at the desired level. We leave the investigation of such
possibilities for future research.

References

1. E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, USA, 1968.
2. E. R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of

Computation, 24(111):713–715, 1970.
3. D. J. Bernstein. List decoding for binary Goppa codes. Preprint, 2008. http:

//cr.yp.to/papers.html#goppalist.
4. D. J. Bernstein, J. Buchmann, and E. Dahmen. Post-Quantum Cryptography.

Springer, 2008.
5. D. J. Bernstein, T. Lange, and C. Peters. Wild McEliece, 20108. Preprint.
6. R. T. Chien. Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem

codes. IEEE Transactions on Information Theory, 10(4):357–363, 1964.
7. J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic cryptanalysis of

McEliece variants with compact keys. In Advances in Cryptology – Eurocrypt’2010,
volume 6110 of Lecture Notes in Computer Science, pages 279–298. Springer, 2010.

8. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Advances in Cryptology – Crypto’1999, volume 1666 of
Lecture Notes in Computer Science, pages 537–554. Springer, 1999.

9. V. D. Goppa. A new class of linear error correcting codes. Problemy Peredachi
Informatsii, 6:24–30, 1970.

10. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767,
1999.

11. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes,
volume 16. North-Holland Mathematical Library, 1977.

12. R. McEliece. A public-key cryptosystem based on algebraic coding theory. The
Deep Space Network Progress Report, DSN PR 42–44, 1978. http://ipnpr.jpl.
nasa.gov/progressreport2/42-44/44N.PDF.

11

13. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, USA, 1999.

14. D. Micciancio. The shortest vector problem is np-hard to approximate to within
some constant. SIAM Journal on Computing, 30(6):2008–2035, 2001.

15. T. Muldersa and A. Storjohann. On lattice reduction for polynomial matrices.
Journal of Symbolic Computation, 35:377–401, 2003.

16. C.-S. Park, G.-L. Feng, and K. K. Tzeng. The new minimum distance bounds of
Goppa codes and their decoding. Designs, Codes and Cryptography, 9(2):157–176,
1996.

17. N. J. Patterson. The algebraic decoding of Goppa codes. IEEE Transactions on
Information Theory, 21(2):203–207, 1975.

18. C. Peters. Information-set decoding for linear codes over Fq. In Post-Quantum
Cryptography Workshop – PQCrypto’2010, volume 6061 of Lecture Notes in Com-
puter Science, pages 81–94. Springer, 2010.

19. Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A method for solving
key equation for decoding Goppa codes. Information and Control, 27(1):87–99,
1975.

20. Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. Further results on
Goppa codes and their applications to constructing efficient binary codes. IEEE
Transactions on Information Theory, 22(5):518–526, 1976.

A The weak Popov form

For ease of reference, we provide here a concise description of the Mulders-
Storjohann polynomial lattice reduction algorithm based on the weak Popov
form. We closely follow the exposition in [15].

Definition 1. For 1 6 i 6 n the i-th pivot index vector IM of a matrix M ∈
Fq[x]n×m is defined as follows: if Mij = 0 for all 1 6 j 6 m, then IMi = 0,
otherwise

1. deg(Mij) 6 deg(Mi,IM
i

) for 1 6 j < IMi ,
2. deg(Mij) < deg(Mi,IM

i
) for IMi < j 6 m.

Definition 2. The carrier set CM of a matrix M ∈ Fq[x]n×m is the set {1 6
i 6 n | IMi 6= 0}. The i-th pivot element of M , denoted PMi , is the element
PMi := Mi,IM

i
when IMi 6= 0, otherwise PMi := 0.

Definition 3. A matrix M ∈ Fq[x]n×m is said to be in weak Popov form if the
positive pivot indices of M are all different, i.e. if ∀k, ` ∈ CM : k 6= ` ⇒ IMk 6=
IM` .

The following theorem establishes that writing a matrix in weak Popov form
yields short vectors in the lattice spanned by its rows.

Theorem 2 ([15]). If matrix M ∈ Fq[x]n×m is in weak Popov form and ` is
such that deg(PM`) = min16i6n{deg(PMi)}, then all vectors in the Fq[x]-module
generated by the rows of M have degree at least deg(PM`).

12

Proof. See [15, Lemma 8.1]. ut
If k ∈ CM , ` 6= k and deg(M`,IM

k
) > deg(PMk), there are unique c ∈ Fq

and e ∈ N such that deg(M`,IM
k
− cxePMk) < deg(M`,IM

k
). In that case we

call the operation M` ← M` − cxeMk the simple transformation of row k on
row `. If IM` = IMk , the transformation is called of the first kind. Then an
efficient algorithm to put a matrix in weak Popov form stems from the following
observation:
Theorem 3 ([15]). M ∈ Fq[x]n×m is not in weak Popov form iff one can apply
a simple transformation of the first kind on M , that is, not all non-zero pivot
indices of M are different.

Proof. See [15, Lemma 2.1]. ut
Therefore, all one has to do to obtain the weak Popov form of a matrixM is to

repeatedly check ifM is already in the weak Popov form (by testing if all nonzero
pivot indices are different) and, if it is not, apply a simple transformation of the
first kind on it. This surprisingly simple algorithm has complexity O(mnrd2) Fq
operations if the rank ofM is r and d is a bound on the degree of all components
of M .

In the case of the lattice basis A defined in Section 4.1 where n = m = r = p
and d = t, this would appear to amount to O(p3t2) Fq operations. However,
matrix A is quite sparse, containing only O(p) rather than O(p2) elements, and
as it becomes denser its components converge to short vectors of expected degree
O(t/p). Therefore the expected number of times a simple transformation of the
first kind has to be applied decreases by a factor O(p) on average, and the
expected complexity of the algorithm for a lattice basis in the form of Equation 9
is only O(p2t2) Fq operations.

This process is summarised in Algorithm 2, where lead(P) denotes the
leading coefficient of P ∈ Fq[x] and rep(IA) denotes the number of occur-
rences of the most frequent value among the nonzero components of IA, i.e.
rep(IA) := max{#{j | IAj = v} | v 6= 0}. Algorithm 2 is strikingly similar to the
variant of the extended Euclidean algorithm usually employed in the decoding
of alternant codes [19], and actually coincides with that method for p = 2.

B Decoding other families of codes?

For completeness, we briefly discuss whether and how one might attempt to use
similar methods to decode a different family of alternant codes, including BCH
codes and their permuted and/or punctured versions.

Let L ∈ Fnq be a sequence of n 6 q distinct nonzero elements, let D ∈ Fnq
be a sequence of nonzero elements, and let H = vdm(L) diag(D). For any word
e ∈ Fnp we define the corresponding alternant r-syndrome polynomial se ∈ Fq[x]
to be se(x) :=

∑r−1
i=0 six

i where sT := HeT, i.e.

si =
n−1∑
j=0

ejDjL
i
j .

13

Algorithm 2 (aka WeakPopovForm) Computing the weak Popov form
Input: A ∈ Fq[x]p×p in the form of Equation 9.
Output: weak Popov form of A.
1: . Compute IA:
2: for j ← 1 to p do
3: IA

j ← if deg(Aj,1) > 0 then 1 else j
4: end for
5: . Put A in weak Popov form:
6: while rep(IA) > 1 do
7: . Find suitable k and ` to apply simple transform of first kind:
8: for k ← 1 to p such that IA

k 6= 0 do
9: for `← 1 to p such that ` 6= k do
10: while deg(A`,IA

k
) > deg(Ak,IA

k
) do

11: c← lead(A`,IA
k

)/ lead(Ak,IA
k

)

12: e← deg(A`,IA
k

)− deg(Ak,IA
k

)

13: A` ← A` − cxeAk

14: end while
15: . Update IA

` and hence rep(IA) if necessary:
16: d← max{deg(A`,j) | j = 1, . . . , p}
17: IA

` ← max{j | deg(A`,j) = d}
18: end for
19: end for
20: end while
21: return A

14

The alternant code A(L,D, r) consists of the set {e ∈ Fnp | se(x) ≡ 0}.
Using the formula for the sum of a geometric sequence

∑r−1
i=0 u

i = (1 −
ur)/(1− u) whereby

∑r−1
i=0 L

i
jx
i = (1− xrLrj)/(1− xLj) ≡ 1/(1− xLj) mod xr,

one can see that

se(x) =
r−1∑
i=0

n−1∑
j=0

ejDjL
i
jx
i =

n−1∑
j=0

ejDj

r−1∑
i=0

Lijx
i ≡

n−1∑
j=0

ejDj

1− xLj
mod xr.

The subfamily we will be interested in is that of alternant codes satisfying
the restriction Dj/Lj ∈ Fp \ {0} for all j, so that each value Dj/Lj can be lifted
to Z with a representative in range 1 . . . p− 1.

Let φ ∈ Fp \{0} be a constant scalar. We define the generalized error locator
polynomial for this family as

σ(x) :=
∏
i

(1− xLi)ei(Di/Li)/φ. (10)

The error positions are revealed by the inverses of the components of L, which
are the roots of this polynomial. This definition coincides with the usual alternant
error locator polynomial when p = 2, in which case D = L (hence, a permuted
and/or punctured subcode of a binary BCH code).

Lifting Equation 10 to Fq(x) and taking the derivative of σ we get

σ′(x) =
∑
j

(ej(Dj/Lj)/φ)(1− xLj)ej(Dj/Lj)/φ−1(−Lj)
∏
i6=j

(1− xLi)ei(Di/Li)/φ

= −(1/φ)
∑
j

ejDj

1− xLj

∏
i

(1− xLi)ei(Di/Li)/φ

= −(1/φ)σ(x)
∑
j

ejDj

1− xLj
,

which over Fq[x] reduces to

−φσ′(x) = σ(x)se(x) mod xr. (11)

This is the key equation for this family of codes.
Now most of the techniques developed for Goppa codes can be applied to solve

Equation 11. The main difference is that the error magnitudes are computed as
a function of the multiplicity µj of a root 1/Lj of σ as ej = φµj/(Dj/Lj).

Writing σ =
∑p−1
k=0 x

kak(x)p for some ak(x) with deg(ak) 6 b(r − k)/pc,
solutions to Equation 11 can be found as short vectors (a0, a1, . . . , ap−1) in the
polynomial lattice spanned by the rows of the matrix

A =

xr 0 . . . 0
−v1 1 . . . 0
...

...
. . .

...
−vp−1 0 . . . 1

15

where vk(x) := p
√
xk − φkxk−1/se(x) mod xr, provided that these p-th roots

exist.
Here the major obstacle for this technique becomes apparent: inverting

se(x) mod xr is usually fine, but computing the necessary p-th roots mod xr is
only very seldom possible. Specifically, assuming that the radicands are uniformly
distributed polynomials in Fq[x]/xr for a random code of this family, the proba-
bility that it is a p-th power mod xr is only about (qr/p/qr)p−1 = p−mr(p−1)2/p,
corresponding to the vanishing of all but a fraction 1/p of the r coefficients of
each of the p− 1 radicands needed to build matrix A.

Therefore there is scant chance that this would work in practice, except pos-
sibly for some highly contrived code whose syndromes lead to suitable radicands
with high probability. It it an open problem whether such codes exist and, if so,
what they might look like.

16

