#include "codecrypt.h" using namespace ccr; #if 0 #include using namespace std; void dump (const polynomial&t) { for (uint i = 0; i < t.size(); ++i) cout << t[i]; cout << endl; } #endif int polynomial::degree() const { int r = -1; for (uint i = 0; i < size(); ++i) if (item (i) ) r = i; return r; } void polynomial::strip() { resize (degree() + 1); } bool polynomial::zero() const { for (uint i = 0; i < size(); ++i) if (item (i) ) return false; return true; } void polynomial::add (const polynomial&f) { int df = f.degree(); if (df > degree() ) resize (df + 1); for (int i = 0; i <= df; ++i) item (i) = item (i) ^ f[i]; } void polynomial::mod (const polynomial&f) { int df = f.degree(); int d; // while there's place to substract, reduce by x^(d-df)-multiply of f while ( (d = degree() ) >= df) { for (int i = 0; i <= df; ++i) item (i + d - df) = item (i + d - df) ^ f[i]; } strip(); } void polynomial::mult (const polynomial&b) { polynomial a = *this; clear(); uint i, j, da, db; da = a.degree(); db = b.degree(); resize (da + db + 1, 0); for (i = 0; i <= da; ++i) if (a[i]) for (j = 0; j <= db; ++j) item (i + j) = item (i + j) ^ b[j]; } polynomial polynomial::gcd (polynomial b) { polynomial a = *this; //eukleides if (a.degree() < 0) return b; for (;;) { if (b.zero() ) return a; a.mod (b); if (a.zero() ) return b; b.mod (a); } //unreachable return polynomial(); } bool polynomial::is_irreducible() { //Ben-Or irreducibility test polynomial xi; //x^(2^i) in our case polynomial xmodf, t; xmodf.resize (2); //precompute (x mod f) although it is usually just x xmodf[0] = 0; xmodf[1] = 1; //x xi = xmodf; xmodf.mod (*this); //mod f uint n = degree(); for (uint i = 1; i <= n / 2; ++i) { t = xi; t.mult (xi); //because mult would destroy xi on xi.mult(xi) t.mod (*this); xi = t; t.add (xmodf); t = t.gcd (*this); if (t.degree() != 0) //gcd(f,x^2^i - x mod f) != 1 return false; } return true; } void polynomial::generate_random_irreducible (uint s, prng & rng) { resize (s + 1); item (s) = 1; //degree s item (0) = 1; //not divisible by x^1 for (uint i = 1; i < s; ++i) item (i) = rng.random (2); while (!is_irreducible() ) { uint pos = 1 + rng.random (s - 1); item (pos) = !item (pos); } } void polynomial::compute_mod_squaring_matrix (matrix&r) { int d = degree(); if (d < 0) return; r.resize (d); polynomial col, t; for (int i = 0; i < d; ++i) { col.clear(); col.resize (i + 1, 0); col[i] = 1; t = col; col.mult (t); col.mod (*this); col.resize (d, 0); r[i] = col; } }