/* * This file is part of Codecrypt. * * Codecrypt is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at * your option) any later version. * * Codecrypt is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Codecrypt. If not, see . */ #include "bvector.h" #include "gf2m.h" #include "polynomial.h" uint bvector::hamming_weight() { uint r = 0; for (uint i = 0; i < size(); ++i) if ( (*this) [i]) ++r; return r; } void bvector::add (const bvector&a) { if (a.size() > size() ) resize (a.size(), 0); for (uint i = 0; i < a.size(); ++i) item (i) = item (i) ^ a[i]; } void bvector::add_range (const bvector&a, uint b, uint e) { if (e > size() ) resize (e, 0); for (uint i = b; i < e; ++i) item (i) = item (i) ^ a[i]; } void bvector::add_offset (const bvector&a, uint offset) { if (offset + a.size() > size() ) resize (offset + a.size(), 0); for (uint i = 0; i < a.size(); ++i) item (offset + i) = item (offset + i) ^ a[i]; } void bvector::set_block (const bvector&a, uint offset) { if (offset + a.size() > size() ) resize (offset + a.size(), 0); for (uint i = 0; i < a.size(); ++i) item (offset + i) = a[i]; } void bvector::get_block (uint offset, uint bs, bvector&out) const { if (offset + bs > size() ) return; out.resize (bs); for (uint i = 0; i < bs; ++i) out[i] = item (offset + i); } bool bvector::operator* (const bvector&a) { bool r = 0; uint s = size(), i; if (s > a.size() ) s = a.size(); for (i = 0; i < s; ++i) r ^= (item (i) &a[i]); return r; } bool bvector::zero() const { for (uint i = 0; i < size(); ++i) if (item (i) ) return false; return true; } void bvector::to_poly (polynomial&r, gf2m&fld) const { r.clear(); if (size() % fld.m) return; //impossible r.resize (size() / fld.m, 0); for (uint i = 0; i < size(); ++i) if (item (i) ) r[i / fld.m] |= (1 << (i % fld.m) ); } void bvector::from_poly (const polynomial&r, gf2m&fld) { clear(); resize (r.size() *fld.m, 0); for (uint i = 0; i < size(); ++i) item (i) = (r[i / fld.m] >> (i % fld.m) ) & 1; } void bvector::to_poly_cotrace (polynomial&r, gf2m&fld) const { r.clear(); if (size() % fld.m) return; //impossible uint s = size() / fld.m; r.resize (s, 0); for (uint i = 0; i < size(); ++i) if (item (i) ) r[i % s] |= (1 << (i / s) ); } void bvector::from_poly_cotrace (const polynomial&r, gf2m&fld) { clear(); uint s = r.size(); resize (s * fld.m, 0); for (uint i = 0; i < size(); ++i) item (i) = (r[i % s] >> (i / s) ) & 1; } bool bvector::to_string (std::string& out) const { if (size() & 0x7) return false; out.clear(); out.resize (size() >> 3, 0); for (uint i = 0; i < size(); ++i) if (item (i) ) out[i >> 3] |= (1 << (i & 0x7) ); return true; } void bvector::from_string (const std::string&in) { clear(); resize (in.length() << 3); for (uint i = 0; i < size(); ++i) item (i) = (in[i >> 3] >> (i & 0x7) ) & 1; } /* * utility colex (un)ranking for niederreiter and workalikes. * see Ruskey's Combinatorial Generation, algorithm 4.10 * * Colex ranking here uses "walking" through combination number space instead * of caching or actual combination number generation. For a nice image, see * the book. * * Suppose that you have a = (n choose k) * * then: * (n+1 choose k) = a * (n+1) / (n-k+1) * (n-1 choose k) = a * (n-k) / n * (n choose k+1) = a * (n-k) / (k+1) * (n choose k-1) = a * k / (n-k+1) * * Because colex ranking forms a "path" through tne combination number space * (from (1 choose 1) to (length choose count)), worst operations actually use * at most (length+count) multiplications and divisions, for worst McEliece * parameters that is around 16k operations total (plus starting combination * number computation un case of unranking, which is around 500 long ops.) * * To compare naive approach: * - ranking needs computation of the same count of combination numbers as * count parameter. Those are (n choose k) with average n=(length/2) and * k=(count/2), every number needs 2k long operations, total operations is * count*count/2 = around 32k for mceliece approach. * - unranking needs terrible number of "attempts" to determine each p (around * 13 in binary search), this basically means it uses around 0.4M long * operations. Wrong way. * * For extremely sparse vectors (where 2*(length+count)>count*count/2, roughly * where count>2*sqrt(length)) it can be benefical to compute stuff using the * naive approach. This doesn't count for our McEliece parameters, so naive * approach is not implemented at all. */ #include static void combination_number (mpz_t& r, uint n, uint k) { mpz_t t; if (k > n) { mpz_set_ui (r, 0); return; } if (k * 2 > n) k = n - k; mpz_set_ui (r, 1); mpz_init (t); //upper part n*(n-1)*(n-2)*...*(n-k+1) for (uint i = n; i > n - k; --i) { mpz_swap (t, r); mpz_mul_ui (r, t, i); } //lower part (div k!) for (uint i = k; i > 1; --i) { mpz_swap (t, r); mpz_tdiv_q_ui (r, t, i); } mpz_clear (t); } static void bvector_to_mpz (const bvector&v, mpz_t&r) { mpz_set_ui (r, 0); mpz_realloc2 (r, v.size() ); for (uint i = 0; i < v.size(); ++i) if (v[i]) mpz_setbit (r, i); else mpz_clrbit (r, i); } static void mpz_to_bvector (mpz_t&x, bvector&r) { r.resize (mpz_sizeinbase (x, 2) ); for (uint i = 0; i < r.size(); ++i) r[i] = mpz_tstbit (x, i); } void bvector::colex_rank (bvector&r) const { mpz_t res, comb, t; mpz_init_set_ui (res, 0); mpz_init_set_ui (comb, 1); mpz_init (t); uint n = 0, k = 1; while (item (n) ) ++n, ++k; //skip the "zeroes" on the beginning ++n; //now n=k=1, comb=1 //non-zero positions for (; n < size(); ++n) { if (item (n) ) { //add combination number to result mpz_swap (t, res); mpz_add (res, t, comb); } //increase n in comb mpz_swap (t, comb); mpz_mul_ui (comb, t, n + 1); mpz_swap (t, comb); mpz_fdiv_q_ui (comb, t, n - k + 1); if (item (n) ) { //increase k in comb mpz_swap (t, comb); mpz_mul_ui (comb, t, n + 1 - k); //n has changed! mpz_swap (t, comb); mpz_fdiv_q_ui (comb, t, k + 1); ++k; } } mpz_to_bvector (res, r); mpz_clear (comb); mpz_clear (t); mpz_clear (res); } bool bvector::colex_unrank (bvector&res, uint n, uint k) const { mpz_t r, comb, t; mpz_init (r); mpz_init (comb); mpz_init (t); bvector_to_mpz (*this, r); combination_number (comb, n, k); //initialize to the end of path res.clear(); //check if incoming r is not too big. if (mpz_cmp (r, comb) >= 0) { mpz_clear (r); mpz_clear (comb); mpz_clear (t); return false; } res.resize (n, 0); for (; k > 0; --k) { if (mpz_sgn (r) == 0) //zero r needs n switch to simple mode break; while (n > k && mpz_cmp (comb, r) > 0) { //decrease n until something <=r is found mpz_swap (t, comb); mpz_mul_ui (comb, t, n - k); mpz_swap (t, comb); mpz_fdiv_q_ui (comb, t, n); --n; } res[n] = 1; //r -= comb mpz_swap (t, r); mpz_sub (r, t, comb); //decrease k mpz_swap (t, comb); mpz_mul_ui (comb, t, k); mpz_swap (t, comb); mpz_fdiv_q_ui (comb, t, n - k + 1); } //do the "zeroes" rest for (; k > 0; --k) { res[k - 1] = 1; } mpz_clear (r); mpz_clear (comb); mpz_clear (t); return true; }