/* * This file is part of Codecrypt. * * Codecrypt is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or (at * your option) any later version. * * Codecrypt is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with Codecrypt. If not, see . */ #include "qd_utils.h" #include using namespace std; /* * we count on that all integers are sufficiently large. * They should be, largest value occuring should be O(k*n) if initial vector is * consisted only from {0,1}^n, and we don't usually have codes of this size. */ static void fwht (vector x, vector&r) { int bs, s; s = x.size(); r.resize (s); bs = s >> 1; r.swap (x); while (bs) { x.swap (r); for (uint i = 0; i < s; ++i) { if ( (i / bs) & 1) r[i] = x[i - bs] - x[i]; else r[i] = x[i] + x[i + bs]; } bs >>= 1; } } //we expect correct parameter size and preallocated out. void fwht_dyadic_multiply (const bvector& a, const bvector& b, bvector& out) { //lift everyting to Z. vector t, A, B; uint i; t.resize (a.size() ); A.resize (a.size() ); B.resize (a.size() ); for (i = 0; i < a.size(); ++i) t[i] = a[i]; fwht (t, A); for (i = 0; i < b.size(); ++i) t[i] = b[i]; fwht (t, B); //multiply diagonals to A for (i = 0; i < A.size(); ++i) A[i] *= B[i]; fwht (A, t); uint bitpos = a.size(); //no problem as a.size() == 1< >&mat) { uint w = mat.size(); if (!w) return false; uint h = mat[0].size(); if (!h) return false; uint bs = mat[0][0].size(); uint i, j, k, l; /* * Inversion is done the quasi-dyadic way: * * - because for QD matrix m=delta(h) the product * m*m = sum(h) * I, binary QD matrix m is either * inversion of itself (m*m=I) or isn't invertible * and m*m=0. sum(h), the "count of ones in QD * signature mod 2", easily determines the result. * * - Using blockwise invertions/multiplications, * gaussian elimination needed to invert the right * square of H can be performed in O(m^2*block_count) * matrix operations. Matrix operations are either * addition (O(t) on QDs), multiplication(O(t log t) * on QDs) or inversion (O(t), as shown above). * Whole proces is therefore quite fast. * * Gaussian elimination on the QD signature should * result in something like this: (for m=3, t=4) * * 1010 0101 1001 1000 0000 0000 * 0101 1100 1110 0000 1000 0000 * 0111 1110 0100 0000 0000 1000 */ bvector tmp; tmp.resize (bs); for (i = 0; i < h; ++i) { //gauss step //first, find a nonsingular matrix in the column for (j = i; j < h; ++j) if (mat[w - h + i][j] .hamming_weight() % 2) break; if (j >= h) //none found, die! return false; //bring it to correct position (swap it to i-th row) if (j > i) for (k = 0; k < w; ++k) mat[k][i].swap (mat[k][j]); //now normalize the row for (j = i; j < h; ++j) { l = mat [w - h + i] [j].hamming_weight(); if (l == 0) continue; //zero is just okay :] if (! (l % 2) ) //singular, make it regular by adding the i-th row for (k = 0; k < w; ++k) mat[k][j].add (mat[k][i]); //now a matrix is regular, we can easily make it I. //first, multiply the row for (k = 0; k < w; ++k) { //don't overwrite the matrix we're counting with if (k == w - h + i) continue; fwht_dyadic_multiply (mat[w - h + i][j], mat[k][j], tmp); mat[k][j] = tmp; } //change the block on the diagonal fwht_dyadic_multiply (mat[w - h + i][j], mat[w - h + i][j], tmp); mat[w - h + i][j] = tmp; //and zero the column below diagonal if (j > i) for (k = 0; k < w; ++k) mat[k][j].add (mat[k][i]); } } for (i = 0; i < h; ++i) { //jordan step //normalize diagonal for (k = 0; k < w - i; ++k) { //we can safely rewrite the diagonal here (nothing's behind it) fwht_dyadic_multiply (mat[w - i - 1][h - i - 1], mat[k][h - i - 1], tmp); mat[k][h - i - 1] = tmp; } //now make zeroes above for (j = i + 1; j < h; ++j) { l = mat[w - i - 1] [h - j - 1].hamming_weight(); if (l == 0) continue; //already zero if (! (l % 2) ) { //nonsingular, fix it by adding diagonal for (k = 0; k < w; ++k) mat[k][h - j - 1].add (mat[k][h - i - 1]); } for (k = 0; k < w - i; ++k) { //overwrite is also safe here fwht_dyadic_multiply (mat[w - i - 1] [h - j - 1], mat[k][h - j - 1], tmp); mat[k][h - j - 1] = tmp; } //I+I=0 for (k = 0; k < w; ++k) mat[k][h - j - 1].add (mat[k][h - i - 1]); } } return true; }