codecrypt/lib/mce_qd.cpp

486 lines
12 KiB
C++

#include "codecrypt.h"
using namespace ccr;
using namespace ccr::mce_qd;
#include "decoding.h"
#include "fwht.h"
#include <set>
static uint sample_from_u (gf2m&fld, prng&rng, std::set<uint>&used)
{
uint x;
for (;;) {
x = rng.random (fld.n);
if (used.count (x) ) continue;
used.insert (x);
return x;
}
}
static uint choose_random (uint limit, prng&rng, std::set<uint>used)
{
if (used.size() >= limit - 1) return 0; //die
for (;;) {
uint a = 1 + rng.random (limit - 1);
if (used.count (a) ) continue;
used.insert (a);
return a;
}
}
int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
uint m, uint T, uint block_discard)
{
priv.fld.create (m);
priv.T = T;
uint t = 1 << T;
std::cout << "generate" << std::endl;
//convenience
gf2m&fld = priv.fld;
std::vector<uint>&Hsig = priv.Hsig;
std::vector<uint>&essence = priv.essence;
std::vector<uint>&support = priv.support;
polynomial&g = priv.g;
//prepare for data
Hsig.resize (fld.n / 2);
support.resize (fld.n / 2);
essence.resize (m);
//note that q=2^m, algo. n=q/2, log n = m-1
//retry generating until goppa code is produced.
for (;;) {
std::set<uint> used;
used.clear();
std::cout << "attempt..." << std::endl;
//first off, compute the H signature
Hsig[0] = choose_random (fld.n, rng, used);
essence[m - 1] = fld.inv (Hsig[0]);
//essence[m-1] is now used as precomputed 1/h_0
for (uint s = 0; s < m - 1; ++s) {
uint i = 1 << s; //i = 2^s
Hsig[i] = choose_random (fld.n, rng, used);
essence[s] = fld.add (essence[m - 1], fld.inv (Hsig[i]) );
used.insert (fld.inv (essence[s]) );
for (uint j = 1; j < i; ++j) {
Hsig[i + j] = fld.inv
(fld.add
(fld.inv (Hsig[i]),
fld.add (
fld.inv (Hsig[j]),
essence[m - 1]
) ) );
used.insert (Hsig[i + j]);
used.insert (fld.inv
(fld.add
(fld.inv (Hsig[i + j]),
essence[m - 1]) ) );
}
}
//from now on, we fix 'omega' from the paper to zero.
std::cout << "goppa..." << std::endl;
//assemble goppa polynomial.
g.clear();
g.resize (1, 1); //g(x)=1 so we can multiply it
polynomial tmp;
tmp.resize (2, 1); //tmp(x)=x-1
for (uint i = 0; i < t; ++i) {
//tmp(x)=x-z=x-(1/h_i)
tmp[0] = fld.inv (Hsig[i]);
g.mult (tmp, fld);
std::cout << "computing g... " << g;
}
std::cout << "Goppa poly " << g;
std::cout << "support..." << std::endl;
//compute the support, retry if it has two equal elements.
used.clear();
bool consistent = true;
for (uint i = 0; i < fld.n / 2; ++i) {
support[i] = fld.add (
fld.inv (Hsig[i]),
essence[m - 1]);
if (used.count (support[i]) ) {
consistent = false;
break;
}
if (g.eval (support[i], fld) == 0) {
std::cout << "support zero!" << std::endl;
consistent = false;
break;
}
std::cout << "support at " << i << ": " << support[i] << std::endl;
used.insert (support[i]);
}
if (!consistent) continue; //retry
std::cout << "blocks..." << std::endl;
//now the blocks.
uint block_size = 1 << T,
h_block_count = (fld.n / 2) / block_size;
uint& block_count = priv.block_count;
block_count = h_block_count - block_discard;
//assemble blocks to bl
std::vector<polynomial> bl, blp;
bl.resize (h_block_count);
for (uint i = 0; i < h_block_count; ++i) {
bl[i].resize (block_size);
for (uint j = 0; j < block_size; ++j)
bl[i][j] = Hsig[i * block_size + j];
}
std::cout << "permuting blocks..." << std::endl;
//permute them
priv.block_perm.generate_random (h_block_count, rng);
priv.block_perm.permute (bl, blp);
std::cout << "discarding blocks..." << std::endl;
//discard blocks
blp.resize (block_count);
std::cout << "permuting dyadic blocks..." << std::endl;
//permute individual blocks
priv.block_perms.resize (block_count);
bl.resize (blp.size() );
for (uint i = 0; i < block_count; ++i) {
priv.block_perms[i] = rng.random (block_size);
permutation::permute_dyadic (priv.block_perms[i],
blp[i], bl[i]);
}
//try several permutations to construct G
uint attempts = 0;
for (attempts = 0; attempts < block_count; ++attempts) {
std::cout << "generating G..." << std::endl;
/*
* try computing the redundancy block of G
*
* First, co-trace H, then compute G in form
*
* G^T = [I | X]
*
* Since H*G^T = [L | R] * [I | X] = L + R*X = 0
* we have the solution: X = R^1 * L
* (thanks to Rafael Misoczki)
*
* Inversion is done the quasi-dyadic way:
*
* - because for QD matrix m=delta(h) the product
* m*m = sum(h) * I, binary QD matrix m is either
* inversion of itself (m*m=I) or isn't invertible
* and m*m=0. sum(h), the "count of ones in QD
* signature mod 2", easily determines the result.
*
* - Using blockwise invertions/multiplications,
* gaussian elimination needed to invert the right
* square of H can be performed in O(m^2*block_count)
* matrix operations. Matrix operations are either
* addition (O(t) on QDs), multiplication(O(t log t)
* on QDs) or inversion (O(t), as shown above).
* Whole proces is therefore quite fast.
*
* Gaussian elimination on the QD signature should
* result in something like this: (for m=3, t=4)
*
* 1010 0101 1001 1000 0000 0000
* 0101 1100 1110 0000 1000 0000
* 0111 1110 0100 0000 0000 1000
*/
priv.hperm.generate_random (block_count, rng);
std::vector<std::vector<bvector> > hblocks;
bvector tmp;
bool failed;
uint i, j, k, l;
//prepare blocks of h
hblocks.resize (block_count);
for (i = 0; i < block_count; ++i)
hblocks[i].resize (fld.m);
//fill them from Hsig
for (i = 0; i < block_count; ++i) {
tmp.from_poly_cotrace (bl[priv.hperm[i]], fld);
for (j = 0; j < fld.m; ++j)
tmp.get_block (j * block_size,
block_size,
hblocks[i][j]);
}
/* now do a modified gaussian elimination on hblocks */
failed = false;
tmp.resize (block_size);
for (i = 0; i < fld.m; ++i) { //gauss step
//first, find a nonsingular matrix in the column
for (j = i; j < fld.m; ++j)
if (hblocks[block_count - fld.m + i][j]
.hamming_weight() % 2) break;
if (j >= fld.m) { //none found, break;
failed = true;
break;
}
//bring it to correct position (swap it to i-th row)
if (j > i) for (k = 0; k < block_count; ++k)
hblocks[k][i].swap
(hblocks[k][j]);
//now normalize the row
for (j = i; j < fld.m; ++j) {
uint l = hblocks
[block_count - fld.m + i]
[j].hamming_weight();
if (l == 0) continue; //zero is just okay :]
if (! (l % 2) ) //singular, make it regular by adding the i-th row
for (k = 0;
k < block_count;
++k)
hblocks[k][j].add
(hblocks[k][i]);
//now a matrix is regular, we can easily make it I
for (k = 0; k < block_count; ++k) {
fwht_dyadic_multiply
(hblocks[block_count - fld.m + i][j],
hblocks[k][j], tmp);
hblocks[k][j] = tmp;
}
//and zero the column below diagonal
if (j > i) for (k = 0; k < block_count; ++k)
hblocks[k][j].add
(hblocks[k][i]);
}
}
if (failed) continue;
for (i = 0; i < fld.m; ++i) { //jordan step
//normalize diagonal (it's already nonsingular)
for (k = 0; k < block_count; ++k) {
fwht_dyadic_multiply
(hblocks[block_count - i - 1][fld.m - i - 1],
hblocks[k][fld.m - i - 1], tmp);
hblocks[k][fld.m - i - 1] = tmp;
}
//now make zeroes above
for (j = i + 1; j < fld.m; ++j) {
l = hblocks[block_count - i - 1]
[fld.m - j - 1].hamming_weight();
if (l == 0) continue; //already zero
if (! (l % 2) ) { //nonsingular, fix it by adding diagonal
for (k = 0; k < block_count; ++k)
hblocks[k][fld.m - j - 1].add
(hblocks[k][fld.m - i - 1]);
}
for (k = 0; k < block_count; ++k) {
fwht_dyadic_multiply
(hblocks[block_count - i - 1]
[fld.m - j - 1],
hblocks[k][fld.m - j - 1], tmp);
hblocks[k][fld.m - j - 1] = tmp;
}
//I+I=0
for (k = 0; k < block_count; ++k)
hblocks[k][fld.m - j - 1].add
(hblocks[k][fld.m - i - 1]);
}
}
if (failed) continue;
pub.qd_sigs.resize (block_count - fld.m);
for (uint i = 0; i < block_count - fld.m; ++i) {
pub.qd_sigs[i].resize (block_size * fld.m);
for (uint j = 0; j < fld.m; ++j)
pub.qd_sigs[i].set_block
(hblocks[i][j], block_size * j);
}
//finish the pubkey
pub.T = T;
break;
}
if (attempts == block_count) //generating G failed, retry all
continue;
return 0;
}
}
int privkey::prepare()
{
std::cout << "prepare" << std::endl;
//compute H signature from essence
Hsig.resize (fld.n / 2);
Hsig[0] = fld.inv (essence[fld.m - 1]);
for (uint s = 0; s < fld.m - 1; ++s) {
uint i = 1 << s; //i = 2^s
Hsig[i] = fld.inv (fld.add (essence[s], essence[fld.m - 1]) );
for (uint j = 1; j < i; ++j)
Hsig[i + j] = fld.inv
(fld.add
(fld.inv (Hsig[i]),
fld.add (
fld.inv (Hsig[j]),
essence[fld.m - 1]
) ) );
}
//compute the support
support.resize (fld.n / 2);
for (uint i = 0; i < fld.n / 2; ++i) {
support[i] = fld.add
(fld.inv (Hsig[i]),
essence[fld.m - 1]);
}
//TODO prepare permuted Hsig (that can be applied to the ciphertext)
//TODO prepare function that converts a support zero to ciphertext
//position
//goppa polynomial
g.clear();
g.resize (1, 1);
polynomial tmp;
tmp.resize (2, 1);
uint t = 1 << T;
for (uint i = 0; i < t; ++i) {
tmp[0] = fld.inv (Hsig[i]);
g.mult (tmp, fld);
}
//sqInv
g.compute_square_root_matrix (sqInv, fld);
return 0;
}
int pubkey::encrypt (const bvector & in, bvector & out, prng & rng)
{
uint t = 1 << T;
bvector p, g, r, cksum;
uint i, j, k;
/*
* shortened checksum pair of G is computed blockwise accordingly to
* the t-sized square dyadic blocks.
*/
//some checks
if (!qd_sigs.size() ) return 1;
if (qd_sigs[0].size() % t) return 1;
uint blocks = qd_sigs[0].size() / t;
cksum.resize (qd_sigs[0].size(), 0);
p.resize (t);
g.resize (t);
r.resize (t);
for (i = 0; i < qd_sigs.size(); ++i) {
//plaintext block
in.get_block (i * t, t, p);
for (j = 0; j < blocks; ++j) {
//checksum block
qd_sigs[i].get_block (j * t, t, g);
//block result
fwht_dyadic_multiply (p, g, r);
//std::cout << "DYADIC MULTIPLY: " << p << g << r << "---" << std::endl;
cksum.add_offset (r, t * j);
//std::cout << "CKSUM NOW: " << cksum;
}
}
//generate t errors
bvector e;
e.resize (cipher_size(), 0);
for (uint n = t; n > 0;) {
uint p = rng.random (e.size() );
if (!e[p]) {
e[p] = 1;
--n;
}
}
//compute ciphertext
out = in;
out.insert (out.end(), cksum.begin(), cksum.end() );
out.add (e);
return 0;
}
int privkey::decrypt (const bvector & in, bvector & out)
{
if (in.size() != cipher_size() ) return 2;
//multiply line-by-line block-by-block by H
uint block_size = 1 << T;
bvector synd_vec;
bvector hp, cp, res;
uint i, j, k;
synd_vec.resize (block_size * fld.m);
hp.resize (block_size);
cp.resize (block_size);
res.resize (block_size);
for (i = 0; i < block_count; ++i) {
in.get_block (i * block_size, block_size, cp);
for (j = 0; j < fld.m; ++j) {
Hc[j].get_block (i * block_size, block_size, hp);
fwht_dyadic_multiply (hp, cp, res);
synd_vec.add_offset (res, j * block_size);
}
}
//decoding
polynomial synd, loc;
synd_vec.to_poly_cotrace (synd, fld);
compute_error_locator (synd, fld, g, sqInv, loc);
bvector ev;
if (!evaluate_error_locator_trace (loc, ev, fld) )
return 1; //couldn't decode
//TODO evaluator should return error positions, not bvector. fix it everywhere!
out = in;
//flip error positions of out.
for (i = 0; i < ev.size(); ++i) if (ev[i]) {
if (support_pos[i] == -1) return 1; //couldn't decode TODO is it true?
out[i] = !out[i];
}
return 0;
}