codecrypt/lib/mce.cpp

173 lines
3.8 KiB
C++

#include "codecrypt.h"
using namespace ccr;
using namespace ccr::mce;
#include "decoding.h"
int ccr::mce::generate (pubkey&pub, privkey&priv, prng&rng, uint m, uint t)
{
//finite field
priv.fld.create (m);
//goppa polynomial
priv.g.generate_random_irreducible (t, priv.fld, rng);
//check and generator matrix
priv.g.compute_goppa_check_matrix (priv.h, priv.fld);
matrix generator;
for (;;) if (priv.h.create_goppa_generator
(generator, priv.hperm, rng) ) break;
//scramble matrix
matrix S;
S.generate_random_invertible (generator.height(), rng);
S.compute_inversion (priv.Sinv);
//scramble permutation
permutation P;
P.generate_random (generator.width(), rng);
P.compute_inversion (priv.Pinv);
//public key
pub.t = t;
S.mult (generator);
P.permute (S, pub.G);
return 0;
}
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
{
uint s = cipher_size();
if (t > s) return 1;
if (in.size() != plain_size() ) return 2;
//make a codeword
G.mult_vecT_left (in, out);
//add error vector
bvector e;
e.resize (s, 0);
for (uint n = t; n > 0;) {
uint p = rng.random (s);
if (!e[p]) {
e[p] = 1;
--n;
}
}
out.add (e);
return 0;
}
int privkey::decrypt (const bvector&in, bvector&out)
{
if (in.size() != cipher_size() ) return 2;
//remove the P permutation
bvector not_permuted;
Pinv.permute (in, not_permuted);
//prepare for decoding
permutation hpermInv;
hperm.compute_inversion (hpermInv);
bvector canonical, syndrome;
hpermInv.permute (not_permuted, canonical);
h.mult_vec_right (canonical, syndrome);
//decode
bvector ev;
if (!syndrome_decode (syndrome, fld, g, sqInv, ev) ) {
return 1; //if decoding somehow failed, fail as well.
}
// check the error vector, it should have exactly t == deg (g) errors
if ( (int) ev.hamming_weight() != g.degree() )
return 1;
//correct the errors
canonical.add (ev);
//shuffle back into systematic order
hperm.permute (canonical, not_permuted);
//get rid of redundancy bits
not_permuted.resize (plain_size() );
//unscramble the result
Sinv.mult_vecT_left (not_permuted, out);
return 0;
}
int privkey::prepare ()
{
g.compute_goppa_check_matrix (h, fld);
g.compute_square_root_matrix (sqInv, fld);
return 0;
}
int privkey::sign (const bvector&in, bvector&out, uint delta, uint attempts, prng&rng)
{
uint i, t, s;
bvector p, e, synd, synd2, e2;
std::vector<uint> epos;
permutation hpermInv;
s = hash_size();
if (in.size() != s) return 2;
//first, prepare the codeword to canonical form for decoding
Pinv.permute (in, e2);
hperm.compute_inversion (hpermInv);
hpermInv.permute (e2, p);
//prepare extra error vector
e.resize (s, 0);
epos.resize (delta, 0);
h.mult_vec_right (p, synd);
for (t = 0; t < attempts; ++t) {
for (i = 0; i < delta; ++i) {
epos[i] = rng.random (s);
/* we don't care about (unlikely) error bit collisions
(they actually don't harm anything) */
e[epos[i]] = 1;
}
//abuse linearity of p+e; it is usually faster.
h.mult_vec_right (e, synd2);
synd2.add (synd);
if (syndrome_decode (synd2, fld, g, sqInv, e2) ) {
//decoding success!
p.add (e); //add original errors
hperm.permute (p, e2); //back to systematic (e2 is tmp)
e2.resize (signature_size() ); //strip redundancy
Sinv.mult_vecT_left (e2, out); //get a signature
return 0; //OK lol
}
//if this round failed, we try a new error pattern.
for (i = 0; i < delta; ++i) //clear the errors for the next cycle
e[epos[i]] = 0;
}
return 1; //couldn't decode
}
int pubkey::verify (const bvector&in, const bvector&hash, uint delta)
{
bvector tmp;
if (!G.mult_vecT_left (in, tmp) ) return 2; //wrong size of input
if (hash.size() != tmp.size() ) return 1; //wrong size of hash, not a sig.
tmp.add (hash);
if (tmp.hamming_weight() > (t + delta) ) return 1; //not a signature
return 0; //sig OK
}