codecrypt/lib/polynomial.cpp

194 lines
4 KiB
C++

#include "codecrypt.h"
using namespace ccr;
#include <iostream>
using namespace std;
void dump (const polynomial&t)
{
for (uint i = 0; i < t.size(); ++i) cout << t[i] << ' ';
cout << endl;
}
int polynomial::degree() const
{
int r = -1;
for (uint i = 0; i < size(); ++i) if (item (i) ) r = i;
return r;
}
void polynomial::strip()
{
resize (degree() + 1);
}
bool polynomial::zero() const
{
for (uint i = 0; i < size(); ++i) if (item (i) ) return false;
return true;
}
void polynomial::add (const polynomial&f, gf2m&fld)
{
int df = f.degree();
if (df > degree() ) resize (df + 1);
for (int i = 0; i <= df; ++i) item (i) = fld.add (item (i), f[i]);
}
void polynomial::mod (const polynomial&f, gf2m&fld)
{
int df = f.degree();
int d;
uint hi = fld.inv (f[df]);
// while there's place to substract, reduce by x^(d-df)-multiply of f
for (d = degree(); d >= df; --d)
if (item (d) ) {
uint t = fld.mult (item (d), hi);
for (int i = 0; i <= df; ++i)
item (i + d - df) = fld.add (item (i + d - df),
fld.mult (t, f[i]) );
}
strip();
}
void polynomial::mult (const polynomial&b, gf2m&fld)
{
polynomial a = *this;
clear();
uint i, j, da, db;
da = a.degree();
db = b.degree();
resize (da + db + 1, 0);
for (i = 0; i <= da; ++i)
if (a[i]) for (j = 0; j <= db; ++j)
item (i + j) = fld.add (item (i + j),
fld.mult (a[i], b[j]) );
}
polynomial polynomial::gcd (polynomial b, gf2m&fld)
{
polynomial a = *this;
//eukleides
if (a.degree() < 0) return b;
for (;;) {
if (b.zero() ) return a;
a.mod (b, fld);
if (a.zero() ) return b;
b.mod (a, fld);
}
//unreachable
return polynomial();
}
bool polynomial::is_irreducible (gf2m&fld)
{
//Ben-Or irreducibility test
polynomial xi; //x^(2^i) in our case
polynomial xmodf, t;
xmodf.resize (2); //precompute (x mod f) although it is usually just x
xmodf[0] = 0;
xmodf[1] = 1; //x
xi = xmodf;
xmodf.mod (*this, fld); //mod f
uint d = degree();
for (uint i = 1; i <= d / 2; ++i) {
t = xi;
t.mult (xi, fld); //because mult would destroy xi on xi.mult(xi)
t.mod (*this, fld);
xi = t;
t.add (xmodf, fld);
t = t.gcd (*this, fld);
if (t.degree() != 0) //gcd(f,x^2^i - x mod f) != 1
return false;
}
return true;
}
void polynomial::generate_random_irreducible (uint s, gf2m&fld, prng& rng)
{
resize (s + 1);
item (s) = 1; //degree s
item (0) = 1 + rng.random (fld.n - 1); //not divisible by x^1
for (uint i = 1; i < s; ++i) item (i) = rng.random (fld.n);
while (!is_irreducible (fld) ) {
uint pos = rng.random (s);
item (pos) = pos == 0 ?
(1 + rng.random (fld.n - 1) ) : rng.random (fld.n);
}
}
bool polynomial::compute_square_root_matrix (vector<polynomial>&r, gf2m&fld)
{
// step 1, generate a square matrix of squares mod poly.
int d = degree();
if (d < 0) return false;
vector<polynomial>l;
l.resize (d);
polynomial col, t;
for (int i = 0; i < d; ++i) {
col.clear();
col.resize (i + 1, 0);
col[i] = 1;
t = col;
col.mult (t, fld);
col.mod (*this, fld);
col.resize (d, 0);
l[i] = col;
}
// step 2, gauss-jordan inverse to unit matrix
r.resize(d);
for(int i=0;i<d;++i) {
r[i].clear();
r[i].resize(d,0);
r[i][i]=1;
}
#define add_row_mult(from,to,coeff) \
for(int c=0;c<d;++c) { \
l[c][to]=fld.add(l[c][to],fld.mult(l[c][from],coeff));\
r[c][to]=fld.add(r[c][to],fld.mult(r[c][from],coeff));\
}
#define row_mult(row,coeff) \
for(int c=0;c<d;++c) {\
l[c][row]=fld.mult(l[c][row],coeff);\
r[c][row]=fld.mult(r[c][row],coeff);\
}
//gauss
uint a;
int i,j;
for(i=0;i<d;++i) {
if(l[i][i]==0) {
//find nonzero
for(j=i+1;j<d;++j) if(l[i][j]!=0) {
add_row_mult(j,i,1);
break;
}
if(j==d) return false;
a=fld.inv(l[i][i]); //normalize
row_mult(i,a);
//zero the col
for(j=i+1;j<d;++j) if(l[i][j]!=0) {
a=l[i][j]; //"minus". luckily on GF(2^m) x+x=0.
add_row_mult(i,j,a);
}
}
}
//jordan
for(i=d-1;i>=0;--i)
for(j=0;j<i;++j) {
a=l[i][j];
if(a==0) continue;
add_row_mult(i,j,a);
}
return true;
}