456 lines
11 KiB
C++
456 lines
11 KiB
C++
|
|
/*
|
|
* This file is part of Codecrypt.
|
|
*
|
|
* Codecrypt is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
* License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "bvector.h"
|
|
#include "gf2m.h"
|
|
#include "polynomial.h"
|
|
|
|
const uint64_t ones = 0xFfffFfffFfffFfffull;
|
|
|
|
void bvector::fix_padding()
|
|
{
|
|
if (blockpos (_size))
|
|
_data[blockof (_size)] &= ~ (ones << blockpos (_size));
|
|
}
|
|
|
|
void bvector::resize (size_t newsize, bool def)
|
|
{
|
|
if (newsize <= _size) {
|
|
_size = newsize;
|
|
_data.resize (datasize (_size));
|
|
fix_padding();
|
|
} else {
|
|
_data.resize (datasize (newsize), 0);
|
|
if (def) fill_ones (_size, newsize);
|
|
else fill_zeros (_size, newsize);
|
|
_size = newsize;
|
|
}
|
|
}
|
|
|
|
void bvector::fill_ones (size_t from, size_t to)
|
|
{
|
|
for (size_t i = (from >> 6) + 1; i < (to >> 6); ++i) _data[i] = ones;
|
|
if (blockof (from) < blockof (to)) {
|
|
_data[blockof (from)] |= (ones << blockpos (from));
|
|
if (blockpos (to))
|
|
_data[blockof (to)] |=
|
|
(ones >> (64 - blockpos (to)));
|
|
} else if (blockpos (to)) {
|
|
_data[blockof (to)] |= (ones << blockpos (from))
|
|
& (ones >> (64 - blockpos (to)));
|
|
}
|
|
}
|
|
|
|
void bvector::fill_zeros (size_t from, size_t to)
|
|
{
|
|
for (size_t i = (from >> 6) + 1; i < (to >> 6); ++i) _data[i] = 0;
|
|
if (blockof (from) < blockof (to)) {
|
|
_data[blockof (from)] &= ~ (ones << blockpos (from));
|
|
if (blockpos (to))
|
|
_data[blockof (to)] &=
|
|
~ (ones >> (64 - blockpos (to)));
|
|
} else if (blockpos (to)) {
|
|
_data[blockof (to)] &= ~ ( (ones << blockpos (from))
|
|
& (ones >> (64 - blockpos (to))));
|
|
}
|
|
}
|
|
|
|
void bvector::append (const bvector&a)
|
|
{
|
|
add_offset (a, _size);
|
|
}
|
|
|
|
void bvector::add_offset (const bvector&a, size_t offset_from, size_t offset_to, size_t cnt)
|
|
{
|
|
if (!cnt) cnt = a._size; //default param
|
|
|
|
while (cnt) {
|
|
uint64_t mask = ones;
|
|
if (cnt < 64) mask >>= (64 - cnt);
|
|
|
|
if (!blockpos (offset_from)) {
|
|
if (!blockpos (offset_to)) {
|
|
_data[blockof (offset_to)] =
|
|
_data[blockof (offset_to)]
|
|
^ (mask & a._data[blockof (offset_from)]);
|
|
offset_from += 64;
|
|
offset_to += 64;
|
|
if (cnt < 64) return;
|
|
cnt -= 64;
|
|
} else {
|
|
//offset_from is aligned, process
|
|
_data[blockof (offset_to)]
|
|
= _data[blockof (offset_to)]
|
|
^ ( (mask & a._data[blockof (offset_from)])
|
|
<< blockpos (offset_to));
|
|
size_t move = 64 - blockpos (offset_to);
|
|
if (cnt < move) return;
|
|
cnt -= move;
|
|
offset_from += move;
|
|
offset_to += move;
|
|
}
|
|
} else {
|
|
if (!blockpos (offset_to)) {
|
|
//only offset_to is aligned
|
|
_data[blockof (offset_to)] = _data[blockof (offset_to)]
|
|
^ (mask & (a._data[blockof (offset_from)]
|
|
>> blockpos (offset_from)));
|
|
size_t move = 64 - blockpos (offset_from);
|
|
if (cnt < move) return;
|
|
cnt -= move;
|
|
offset_from += move;
|
|
offset_to += move;
|
|
} else {
|
|
//nothing is aligned, realign by tiny steps
|
|
//TODO choose whether to realign by offset_from or to
|
|
item (offset_to) = item (offset_to) ^a.item (offset_from);
|
|
--cnt;
|
|
++offset_from;
|
|
++offset_to;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void bvector::add_offset (const bvector&a, size_t offset_to)
|
|
{
|
|
if (offset_to + a._size > _size) resize (offset_to + a._size, 0);
|
|
add_offset (a, 0, offset_to, a._size);
|
|
}
|
|
|
|
static uint uint64weight (uint64_t x)
|
|
{
|
|
/*
|
|
* const-time uint64_t hamming weight, taken from wikipedia. <3
|
|
*/
|
|
|
|
static const uint64_t
|
|
m1 = 0x5555555555555555,
|
|
m2 = 0x3333333333333333,
|
|
m4 = 0x0f0f0f0f0f0f0f0f,
|
|
h01 = 0x0101010101010101;
|
|
|
|
x -= (x >> 1) & m1;
|
|
x = (x & m2) + ( (x >> 2) & m2);
|
|
x = (x + (x >> 4)) & m4;
|
|
return (x * h01) >> 56;
|
|
}
|
|
|
|
uint bvector::hamming_weight()
|
|
{
|
|
uint r = 0;
|
|
for (size_t i = 0; i < _data.size(); ++i) r += uint64weight (_data[i]);
|
|
return r;
|
|
}
|
|
|
|
void bvector::add (const bvector&a)
|
|
{
|
|
if (a._size > _size) resize (a._size, 0);
|
|
add_offset (a, 0, 0, a._size);
|
|
}
|
|
|
|
void bvector::add_range (const bvector&a, size_t b, size_t e)
|
|
{
|
|
if (e > size()) resize (e, 0);
|
|
add_offset (a, b, b, e - b);
|
|
}
|
|
|
|
void bvector::rot_add (const bvector&a, size_t rot)
|
|
{
|
|
size_t as = a._size;
|
|
if (_size < as) resize (as, 0);
|
|
rot = rot % as;
|
|
if (!rot) add (a);
|
|
else {
|
|
add_offset (a, 0, rot, as - rot); //...123456
|
|
add_offset (a, as - rot, 0, rot); //789123456
|
|
}
|
|
}
|
|
|
|
void bvector::set_block (const bvector&a, size_t offset)
|
|
{
|
|
if (offset + a.size() > size()) resize (offset + a.size(), 0);
|
|
fill_zeros (offset, offset + a.size());
|
|
add_offset (a, 0, offset, a.size());
|
|
}
|
|
|
|
void bvector::get_block (size_t offset, size_t bs, bvector&out) const
|
|
{
|
|
if (offset + bs > size()) return;
|
|
out.resize (bs);
|
|
out.fill_zeros();
|
|
out.add_offset (*this, offset, 0, bs);
|
|
}
|
|
|
|
uint bvector::and_hamming_weight (const bvector&a) const
|
|
{
|
|
/* sizes must match */
|
|
uint r = 0;
|
|
size_t s = _data.size();
|
|
if (s > a._data.size()) s = a._data.size();
|
|
for (size_t i = 0; i < s; ++i) r += uint64weight (_data[i] & a._data[i]);
|
|
return r;
|
|
}
|
|
|
|
bool bvector::zero() const
|
|
{
|
|
//zero padding assures we don't need to care about last bits
|
|
for (size_t i = 0; i < _data.size(); ++i) if (_data[i]) return false;
|
|
return true;
|
|
}
|
|
|
|
void bvector::from_poly_cotrace (const polynomial&r, gf2m&fld)
|
|
{
|
|
clear();
|
|
size_t s = r.size();
|
|
resize (s * fld.m, 0);
|
|
for (size_t i = 0; i < size(); ++i)
|
|
item (i) = (r[i % s] >> (i / s)) & 1;
|
|
}
|
|
|
|
void bvector::to_bytes (std::vector<byte>& out) const
|
|
{
|
|
out.resize ( (size() + 7) >> 3, 0);
|
|
|
|
for (size_t i = 0; i < size(); i += 8)
|
|
out[i >> 3] = (_data[i >> 6]
|
|
>> ( ( (i >> 3) & 7) << 3)) & 0xff;
|
|
}
|
|
|
|
void bvector::to_string (std::string& out) const
|
|
{
|
|
out.resize ( (size() + 7) >> 3, '\0');
|
|
|
|
for (size_t i = 0; i < size(); i += 8)
|
|
out[i >> 3] = (_data[i >> 6]
|
|
>> ( ( (i >> 3) & 7) << 3)) & 0xff;
|
|
}
|
|
|
|
void bvector::from_string (const std::string&in, size_t bits)
|
|
{
|
|
if (bits) resize (bits);
|
|
else resize (in.length() << 3);
|
|
fill_zeros();
|
|
|
|
for (size_t i = 0; i < size(); i += 8)
|
|
_data[i >> 6] |=
|
|
( (uint64_t) (unsigned char) in[i >> 3])
|
|
<< ( ( (i >> 3) & 7) << 3);
|
|
fix_padding();
|
|
}
|
|
|
|
void bvector::from_bytes (const std::vector<byte>&in, size_t bits)
|
|
{
|
|
if (bits) resize (bits);
|
|
else resize (in.size() << 3);
|
|
fill_zeros();
|
|
|
|
for (size_t i = 0; i < size(); i += 8)
|
|
_data[i >> 6] |=
|
|
( (uint64_t) (unsigned char) in[i >> 3])
|
|
<< ( ( (i >> 3) & 7) << 3);
|
|
fix_padding();
|
|
}
|
|
|
|
/*
|
|
* utility colex (un)ranking for niederreiter and workalikes.
|
|
* see Ruskey's Combinatorial Generation, algorithm 4.10
|
|
*
|
|
* Colex ranking here uses "walking" through combination number space instead
|
|
* of caching or actual combination number generation. For a nice image, see
|
|
* the book.
|
|
*
|
|
* Suppose that you have a = (n choose k)
|
|
*
|
|
* then:
|
|
* (n+1 choose k) = a * (n+1) / (n-k+1)
|
|
* (n-1 choose k) = a * (n-k) / n
|
|
* (n choose k+1) = a * (n-k) / (k+1)
|
|
* (n choose k-1) = a * k / (n-k+1)
|
|
*
|
|
* Because colex ranking forms a "path" through tne combination number space
|
|
* (from (1 choose 1) to (length choose count)), worst operations actually use
|
|
* at most (length+count) multiplications and divisions, for worst McEliece
|
|
* parameters that is around 16k operations total (plus starting combination
|
|
* number computation un case of unranking, which is around 500 long ops.)
|
|
*
|
|
* To compare naive approach:
|
|
* - ranking needs computation of the same count of combination numbers as
|
|
* count parameter. Those are (n choose k) with average n=(length/2) and
|
|
* k=(count/2), every number needs 2k long operations, total operations is
|
|
* count*count/2 = around 32k for mceliece approach.
|
|
* - unranking needs terrible number of "attempts" to determine each p (around
|
|
* 13 in binary search), this basically means it uses around 0.4M long
|
|
* operations. Wrong way.
|
|
*
|
|
* For extremely sparse vectors (where 2*(length+count)>count*count/2, roughly
|
|
* where count>2*sqrt(length)) it can be benefical to compute stuff using the
|
|
* naive approach. This doesn't count for our McEliece parameters, so naive
|
|
* approach is not implemented at all.
|
|
*/
|
|
|
|
#include <gmp.h>
|
|
|
|
static void combination_number (mpz_t& r, uint n, uint k)
|
|
{
|
|
mpz_t t;
|
|
if (k > n) {
|
|
mpz_set_ui (r, 0);
|
|
return;
|
|
}
|
|
|
|
if (k * 2 > n) k = n - k;
|
|
|
|
mpz_set_ui (r, 1);
|
|
mpz_init (t);
|
|
|
|
//upper part n*(n-1)*(n-2)*...*(n-k+1)
|
|
for (uint i = n; i > n - k; --i) {
|
|
mpz_swap (t, r);
|
|
mpz_mul_ui (r, t, i);
|
|
}
|
|
//lower part (div k!)
|
|
for (uint i = k; i > 1; --i) {
|
|
mpz_swap (t, r);
|
|
mpz_tdiv_q_ui (r, t, i);
|
|
}
|
|
|
|
mpz_clear (t);
|
|
}
|
|
|
|
static void bvector_to_mpz (const bvector&v, mpz_t&r)
|
|
{
|
|
mpz_set_ui (r, 0);
|
|
mpz_realloc2 (r, v.size());
|
|
for (uint i = 0; i < v.size(); ++i)
|
|
if (v[i])
|
|
mpz_setbit (r, i);
|
|
else mpz_clrbit (r, i);
|
|
}
|
|
|
|
static void mpz_to_bvector (mpz_t&x, bvector&r)
|
|
{
|
|
r.resize (mpz_sizeinbase (x, 2));
|
|
for (uint i = 0; i < r.size(); ++i)
|
|
r[i] = mpz_tstbit (x, i);
|
|
}
|
|
|
|
void bvector::colex_rank (bvector&r) const
|
|
{
|
|
mpz_t res, comb, t;
|
|
mpz_init_set_ui (res, 0);
|
|
mpz_init_set_ui (comb, 1);
|
|
mpz_init (t);
|
|
|
|
uint n = 0, k = 1;
|
|
|
|
while (item (n)) ++n, ++k; //skip the "zeroes" on the beginning
|
|
|
|
++n; //now n=k=1, comb=1
|
|
|
|
//non-zero positions
|
|
for (; n < size(); ++n) {
|
|
|
|
if (item (n)) {
|
|
//add combination number to result
|
|
mpz_swap (t, res);
|
|
mpz_add (res, t, comb);
|
|
}
|
|
|
|
//increase n in comb
|
|
mpz_swap (t, comb);
|
|
mpz_mul_ui (comb, t, n + 1);
|
|
mpz_swap (t, comb);
|
|
mpz_fdiv_q_ui (comb, t, n - k + 1);
|
|
|
|
if (item (n)) {
|
|
//increase k in comb
|
|
mpz_swap (t, comb);
|
|
mpz_mul_ui (comb, t, n + 1 - k); //n has changed!
|
|
mpz_swap (t, comb);
|
|
mpz_fdiv_q_ui (comb, t, k + 1);
|
|
++k;
|
|
}
|
|
}
|
|
|
|
mpz_to_bvector (res, r);
|
|
|
|
mpz_clear (comb);
|
|
mpz_clear (t);
|
|
mpz_clear (res);
|
|
}
|
|
|
|
bool bvector::colex_unrank (bvector&res, uint n, uint k) const
|
|
{
|
|
mpz_t r, comb, t;
|
|
mpz_init (r);
|
|
mpz_init (comb);
|
|
mpz_init (t);
|
|
|
|
bvector_to_mpz (*this, r);
|
|
|
|
combination_number (comb, n, k); //initialize to the end of path
|
|
res.clear();
|
|
|
|
//check if incoming r is not too big.
|
|
if (mpz_cmp (r, comb) >= 0) {
|
|
mpz_clear (r);
|
|
mpz_clear (comb);
|
|
mpz_clear (t);
|
|
return false;
|
|
}
|
|
|
|
res.resize (n, 0);
|
|
|
|
for (; k > 0; --k) {
|
|
if (mpz_sgn (r) == 0) //zero r needs n<k -> switch to simple mode
|
|
break;
|
|
|
|
while (n > k && mpz_cmp (comb, r) > 0) {
|
|
//decrease n until something <=r is found
|
|
mpz_swap (t, comb);
|
|
mpz_mul_ui (comb, t, n - k);
|
|
mpz_swap (t, comb);
|
|
mpz_fdiv_q_ui (comb, t, n);
|
|
--n;
|
|
}
|
|
|
|
res[n] = 1;
|
|
|
|
//r -= comb
|
|
mpz_swap (t, r);
|
|
mpz_sub (r, t, comb);
|
|
|
|
//decrease k
|
|
mpz_swap (t, comb);
|
|
mpz_mul_ui (comb, t, k);
|
|
mpz_swap (t, comb);
|
|
mpz_fdiv_q_ui (comb, t, n - k + 1);
|
|
}
|
|
|
|
//do the "zeroes" rest
|
|
for (; k > 0; --k) {
|
|
res[k - 1] = 1;
|
|
}
|
|
|
|
mpz_clear (r);
|
|
mpz_clear (comb);
|
|
mpz_clear (t);
|
|
return true;
|
|
}
|