214 lines
4.4 KiB
C++
214 lines
4.4 KiB
C++
|
|
#include "codecrypt.h"
|
|
|
|
using namespace ccr;
|
|
|
|
void matrix::unit (uint size)
|
|
{
|
|
clear();
|
|
resize (size);
|
|
for (uint i = 0; i < size; ++i) {
|
|
item (i).resize (size, 0);
|
|
item (i) [i] = 1;
|
|
}
|
|
}
|
|
|
|
matrix matrix::operator* (const matrix&a)
|
|
{
|
|
matrix r = *this;
|
|
r.mult (a);
|
|
return r;
|
|
}
|
|
|
|
void matrix::compute_transpose (matrix&r)
|
|
{
|
|
uint h = height(), w = width(), i, j;
|
|
r.resize (h);
|
|
for (i = 0; i < h; ++i) {
|
|
r[i].resize (w);
|
|
for (j = 0; j < w; ++j) r[i][j] = item (j) [i];
|
|
}
|
|
}
|
|
|
|
void matrix::mult (const matrix&right)
|
|
{
|
|
//trivial multiply. TODO strassen algo for larger matrices.
|
|
matrix leftT;
|
|
compute_transpose (leftT);
|
|
uint w = right.width(), h = leftT.width(), i, j;
|
|
resize (w);
|
|
for (i = 0; i < w; ++i) {
|
|
item (i).resize (h);
|
|
for (j = 0; j < h; ++j) item (i) [j] = leftT[j] * right[i];
|
|
}
|
|
}
|
|
|
|
bool matrix::compute_inversion (matrix&res)
|
|
{
|
|
//gauss-jordan elimination with inversion of the second matrix.
|
|
//we are computing with transposed matrices for simpler row ops
|
|
|
|
uint s = width();
|
|
if (s != height() ) return false;
|
|
matrix m, r;
|
|
r.unit (s);
|
|
this->compute_transpose (m);
|
|
|
|
uint i, j;
|
|
|
|
//gauss step, create a lower triangular out of m, mirror to r
|
|
for (i = 0; i < s; ++i) {
|
|
//we need pivoting 1 at [i][i]. If there's none, get it below.
|
|
if (m[i][i] != 1) {
|
|
for (j = i + 1; j < s; ++j) if (m[j][i] == 1) break;
|
|
if (j == s) return false; //noninvertible
|
|
m[i].swap (m[j]);
|
|
r[i].swap (r[j]);
|
|
}
|
|
//remove 1's below
|
|
for (j = i + 1; j < s; ++j) if (m[j][i]) {
|
|
m[j].add (m[i]);
|
|
r[j].add (r[i]);
|
|
}
|
|
}
|
|
|
|
//jordan step (we do it forward because it doesn't matter on GF(2))
|
|
for (i = 0; i < s; ++i)
|
|
for (j = 0; j < i; ++j)
|
|
if (m[j][i]) {
|
|
m[j].add (m[i]);
|
|
r[j].add (r[i]);
|
|
}
|
|
|
|
r.compute_transpose (res);
|
|
return true;
|
|
}
|
|
|
|
void matrix::generate_random_invertible (uint size, prng & rng)
|
|
{
|
|
matrix lt, ut;
|
|
uint i, j;
|
|
// random lower triangular
|
|
lt.resize (size);
|
|
for (i = 0; i < size; ++i) {
|
|
lt[i].resize (size);
|
|
lt[i][i] = 1;
|
|
for (j = i + 1; j < size; ++j) lt[i][j] = rng.random (2);
|
|
}
|
|
// random upper triangular
|
|
ut.resize (size);
|
|
for (i = 0; i < size; ++i) {
|
|
ut[i].resize (size);
|
|
ut[i][i] = 1;
|
|
for (j = 0; j < i; ++j) ut[i][j] = rng.random (2);
|
|
}
|
|
lt.mult (ut);
|
|
// permute
|
|
permutation p;
|
|
p.generate_random (size, rng);
|
|
p.permute (lt, *this);
|
|
}
|
|
|
|
bool matrix::get_left_square (matrix&r)
|
|
{
|
|
uint h = height();
|
|
if (width() < h) return false;
|
|
r.clear();
|
|
r.resize (h);
|
|
for (uint i = 0; i < h; ++i) r[i] = item (i);
|
|
return true;
|
|
}
|
|
|
|
bool matrix::strip_left_square (matrix&r)
|
|
{
|
|
uint h = height(), w = width();
|
|
if (w < h) return false;
|
|
r.clear();
|
|
r.resize (w - h);
|
|
for (uint i = 0; i < w - h; ++i) r[i] = item (h + i);
|
|
return true;
|
|
}
|
|
|
|
bool matrix::get_right_square (matrix&r)
|
|
{
|
|
uint h = height(), w = width();
|
|
if (w < h) return false;
|
|
r.clear();
|
|
r.resize (h);
|
|
for (uint i = 0; i < h; ++i) r[i] = item (w - h + i);
|
|
return true;
|
|
}
|
|
|
|
bool matrix::strip_right_square (matrix&r)
|
|
{
|
|
uint h = height(), w = width();
|
|
if (w < h) return false;
|
|
r.clear();
|
|
r.resize (w - h);
|
|
for (uint i = 0; i < w - h; ++i) r[i] = item (i);
|
|
return true;
|
|
}
|
|
|
|
void matrix::extend_left_compact (matrix&r)
|
|
{
|
|
uint i;
|
|
uint h = height(), w = width();
|
|
r.clear();
|
|
r.resize (h + w);
|
|
for (i = 0; i < h; ++i) {
|
|
r[i].resize (h, 0);
|
|
r[i][i] = 1;
|
|
}
|
|
for (i = 0; i < w; ++i) {
|
|
r[h+i] = item (i);
|
|
}
|
|
}
|
|
|
|
bool matrix::create_goppa_generator (matrix&g, permutation&p, prng&rng)
|
|
{
|
|
p.generate_random (width(), rng);
|
|
return create_goppa_generator (g, p);
|
|
}
|
|
|
|
bool matrix::create_goppa_generator (matrix&g, const permutation&p)
|
|
{
|
|
matrix t, sinv, s;
|
|
|
|
//generator construction from Barreto's PQC-4 slides p.21
|
|
p.permute (*this, t);
|
|
t.get_right_square (sinv);
|
|
if (!sinv.compute_inversion (s) ) return false; //meant to be retried.
|
|
|
|
s.mult (t);
|
|
s.strip_right_square (t); //matrix pingpong for the result
|
|
t.compute_transpose (s);
|
|
s.extend_left_compact (g);
|
|
return true;
|
|
}
|
|
|
|
bool matrix::mult_vecT_left (const bvector&a, bvector&r)
|
|
{
|
|
uint w = width(), h = height();
|
|
if (a.size() != h) return false;
|
|
r.clear();
|
|
r.resize (w, 0);
|
|
for (uint i = 0; i < w; ++i) {
|
|
bool t = 0;
|
|
for (uint j = 0; j < h; ++j)
|
|
t ^= item (i) [j] & a[j];
|
|
r[i] = t;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool matrix::mult_vec_right (const bvector&a, bvector&r)
|
|
{
|
|
uint w = width(), h = height();
|
|
if (a.size() != w) return false;
|
|
r.clear();
|
|
r.resize (h, 0);
|
|
for (uint i = 0; i < w; ++i)
|
|
if (a[i]) r.add (item (i) );
|
|
return true;
|
|
}
|