257 lines
5.2 KiB
C++
257 lines
5.2 KiB
C++
|
|
/*
|
|
* This file is part of Codecrypt.
|
|
*
|
|
* Codecrypt is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* Codecrypt is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
* License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with Codecrypt. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "polynomial.h"
|
|
#include "gf2m.h"
|
|
#include "prng.h"
|
|
#include "matrix.h"
|
|
|
|
int polynomial::degree() const
|
|
{
|
|
int r;
|
|
for (r = ( (int) size()) - 1; r >= 0; --r) if (item (r)) break;
|
|
return r;
|
|
}
|
|
|
|
void polynomial::strip()
|
|
{
|
|
resize (degree() + 1);
|
|
}
|
|
|
|
bool polynomial::zero() const
|
|
{
|
|
for (uint i = 0; i < size(); ++i) if (item (i)) return false;
|
|
return true;
|
|
}
|
|
|
|
bool polynomial::one() const
|
|
{
|
|
if (degree() != 0) return false;
|
|
return (item (0) == 1) ? true : false;
|
|
}
|
|
|
|
void polynomial::add (const polynomial&f, gf2m&fld)
|
|
{
|
|
int df = f.degree();
|
|
if (df > degree()) resize (df + 1);
|
|
for (int i = 0; i <= df; ++i) item (i) = fld.add (item (i), f[i]);
|
|
}
|
|
|
|
void polynomial::add_mult (const polynomial&f, uint mult, gf2m&fld)
|
|
{
|
|
int df = f.degree();
|
|
if (df > degree()) resize (df + 1);
|
|
for (int i = 0; i <= df; ++i)
|
|
item (i) = fld.add (item (i), fld.mult (mult, f[i]));
|
|
}
|
|
|
|
void polynomial::mod (const polynomial&f, gf2m&fld)
|
|
{
|
|
int df = f.degree();
|
|
if (df < 0) { //mod 0 -> 0
|
|
clear();
|
|
return;
|
|
}
|
|
int d;
|
|
uint hi = fld.inv (f[df]);
|
|
// while there's place to substract, reduce by x^(d-df)-multiply of f
|
|
for (d = degree(); d >= df; --d)
|
|
if (item (d)) {
|
|
uint t = fld.mult (item (d), hi);
|
|
|
|
for (int i = 0; i <= df; ++i)
|
|
item (i + d - df)
|
|
= fld.add (item (i + d - df),
|
|
fld.mult (t, f[i]));
|
|
}
|
|
strip();
|
|
}
|
|
|
|
void polynomial::mult (const polynomial&b, gf2m&fld)
|
|
{
|
|
polynomial a = *this;
|
|
int da, db, i, j;
|
|
da = a.degree();
|
|
db = b.degree();
|
|
|
|
clear();
|
|
if ( (da < 0) || (db < 0)) //multiply by zero, not much to do.
|
|
return;
|
|
|
|
resize (da + db + 1, 0);
|
|
for (i = 0; i <= da; ++i)
|
|
if (a[i]) for (j = 0; j <= db; ++j)
|
|
item (i + j) = fld.add (item (i + j),
|
|
fld.mult (a[i], b[j]));
|
|
}
|
|
|
|
polynomial polynomial::gcd (polynomial b, gf2m&fld)
|
|
{
|
|
polynomial a = *this;
|
|
|
|
//eukleides
|
|
if (a.degree() < 0) return b;
|
|
for (;;) {
|
|
if (b.zero()) return a;
|
|
a.mod (b, fld);
|
|
if (a.zero()) return b;
|
|
b.mod (a, fld);
|
|
}
|
|
//unreachable
|
|
return polynomial();
|
|
}
|
|
|
|
uint polynomial::eval (uint x, gf2m&fld) const
|
|
{
|
|
uint r = 0;
|
|
//horner
|
|
for (int i = degree(); i >= 0; --i)
|
|
r = fld.add (item (i), fld.mult (r, x));
|
|
return r;
|
|
}
|
|
|
|
void polynomial::shift (uint n)
|
|
{
|
|
if (degree() < 0) return;
|
|
insert (begin(), n, 0);
|
|
}
|
|
|
|
void polynomial::square (gf2m&fld)
|
|
{
|
|
polynomial a = *this;
|
|
mult (a, fld);
|
|
}
|
|
|
|
void polynomial::sqrt (std::vector<polynomial>& sqInv, gf2m&fld)
|
|
{
|
|
polynomial a = *this;
|
|
clear();
|
|
uint s = sqInv.size();
|
|
resize (s, 0);
|
|
|
|
for (uint i = 0; i < s; ++i) {
|
|
for (uint j = 0; j < s; ++j) {
|
|
if (j >= a.size()) break;
|
|
if (i >= sqInv[j].size()) continue;
|
|
item (i) = fld.add (item (i), fld.mult (sqInv[j][i], a[j]));
|
|
}
|
|
}
|
|
strip();
|
|
for (uint i = 0; i < size(); ++i)
|
|
item (i) = fld.sq_root (item (i));
|
|
}
|
|
|
|
void polynomial::div (polynomial&p, polynomial&m, gf2m&fld)
|
|
{
|
|
polynomial r0, r1, s0, s1, s2, q0, q1;
|
|
|
|
r0 = m;
|
|
r1 = p;
|
|
r1.mod (m, fld);
|
|
|
|
s0.clear();
|
|
|
|
s1.swap (*this);
|
|
s1.mod (m, fld);
|
|
|
|
while (r1.degree() >= 0) {
|
|
r0.divmod (r1, q0, q1, fld);
|
|
r0.swap (r1);
|
|
r1.swap (q1);
|
|
|
|
s2 = s0;
|
|
q0.mult (s1, fld);
|
|
q0.mod (m, fld);
|
|
s2.add (q0, fld);
|
|
|
|
s0.swap (s1);
|
|
s1.swap (s2);
|
|
}
|
|
|
|
this->swap (s0);
|
|
|
|
//scalar divide by r0 head
|
|
if (r0.degree() < 0) return;
|
|
uint c = r0[r0.degree() ];
|
|
c = fld.inv (c);
|
|
for (uint i = 0; i < size(); ++i) item (i) = fld.mult (item (i), c);
|
|
}
|
|
|
|
void polynomial::divmod (polynomial&d, polynomial&res, polynomial&rem, gf2m&fld)
|
|
{
|
|
int degd = d.degree();
|
|
if (degd < 0) return;
|
|
|
|
uint headInv = fld.inv (d[degd]);
|
|
rem = *this;
|
|
res.clear();
|
|
int t;
|
|
while ( (t = rem.degree()) >= degd) {
|
|
int rp = t - degd;
|
|
if ( (int) res.size() < rp + 1) res.resize (rp + 1, 0);
|
|
res[rp] = fld.mult (headInv, rem[t]);
|
|
for (int i = 0; i <= degd; ++i)
|
|
rem[i + rp] = fld.add (rem[i + rp], fld.mult (res[rp], d[i]));
|
|
}
|
|
rem.strip();
|
|
}
|
|
|
|
void polynomial::inv (polynomial&m, gf2m&fld)
|
|
{
|
|
polynomial a = *this;
|
|
resize (1);
|
|
item (0) = 1;
|
|
div (a, m, fld);
|
|
}
|
|
|
|
void polynomial::ext_euclid (polynomial&a_out, polynomial&b_out,
|
|
polynomial&m, gf2m&fld, int deg)
|
|
{
|
|
//TODO: speed this up (spare degree calculations)
|
|
polynomial A, B, a, b, tmp;
|
|
uint h;
|
|
|
|
A = *this;
|
|
a = m;
|
|
B.clear();
|
|
B.resize (1, 1);
|
|
b.clear();
|
|
|
|
while (a.degree() > deg) {
|
|
if (A.degree() < 0)
|
|
break;
|
|
|
|
A.swap (a);
|
|
B.swap (b);
|
|
int j;
|
|
while ( (j = A.degree() - a.degree()) >= 0) {
|
|
h = fld.div (A.head(), a.head());
|
|
tmp = a;
|
|
tmp.shift (j);
|
|
A.add_mult (tmp, h, fld);
|
|
tmp = b;
|
|
tmp.shift (j);
|
|
B.add_mult (tmp, h, fld);
|
|
}
|
|
}
|
|
|
|
a.swap (a_out);
|
|
b.swap (b_out);
|
|
}
|
|
|