Merge branch 'gc-attempt-1'

This commit is contained in:
Mirek Kratochvil 2023-11-01 18:25:26 +01:00
commit 1909e97d46
18 changed files with 634 additions and 105 deletions

View file

@ -11,7 +11,7 @@ clean:
rm -f $(OBJS) $(PROGS)
%.o: %.s $(wildcard include/*.s)
as $< -o $@
as -g $< -o $@
%: %.o
ld $@.o -o $@

View file

@ -23,7 +23,7 @@
thunkto %r12, $print, $1, %r12
# make a continuation for main (exit) and set it for print call
thunkto %rsi, $main_exit, $1, %rsi
thunkto %rsi, $main_exit, $0
# start evaluating the print
enter %r12

View file

@ -45,7 +45,7 @@
thunkto %r13, $print, $1, %r13
# make a continuation for main (exit) and set it for print call
thunkto %rsi, $main_exit, $1, %rsi
thunkto %rsi, $main_exit, $0
# start evaluating the print
enter %r13

View file

@ -5,6 +5,7 @@
# || -> cont
.thunkcode main
needs_alloc $0120
thunkto %r11, $INT_code, $100
thunkto %r12, $INT_code, $23
thunkto %r13, $plus, $2, %r11, %r12

5
fibs.s
View file

@ -8,6 +8,7 @@
# | lag1 | lag2 | -> cont
.thunkcode fibs
needs_alloc $0140
# next value
thunkto %r11, $plus, $2, 020(%rbp), 030(%rbp)
@ -28,15 +29,17 @@
# || -> cont
.thunkcode fibs0
needs_alloc $0100
thunkto %r12, $INT_code, $1
thunkto %r11, $INT_code, $0
thunk $fibs, $2, %r11, %r12
enter %rsp
.thunkcode main
needs_alloc $0160
thunkto %r12, $fibs0, $0
thunkto %r11, $INT_code, $20
thunkto %r11, $list_int_index, $2, %r11, %r12
thunkto %r11, $print, $1, %r11
thunkto %rsi, $main_exit, $1, %rsi
thunkto %rsi, $main_exit, $0
enter %r11

View file

@ -5,6 +5,7 @@
# | fun | arg | -> cont
.thunkcode apply1
needs_alloc $050
thunkto %rsi, $apply1_fini, $3, 030(%rbp), %rbp, %rsi
enter 020(%rbp) # evaluate fun
@ -14,6 +15,10 @@
# we're certainly going to copy a lot of args.
mov 020(%rsi), %r11 # amount of args applied now
# prepare enough memory for the worst case alloc (make FUN from arg count + 3)
lea 030(,%r11,010), %r12
needs_alloc %r12
# the copying code is shared so let's do that first:
pushq 020(%rbp) #push the new arg
lea 030(%rsi), %rdx # the end (first arg)
@ -59,6 +64,7 @@ apply1_fini_feed:
# | fun | arg[1] | arg[2] | ... | arg[args-1] | -> cont
.thunkcode apply
needs_alloc $040
thunkto %rsi, $apply_fini, $2, %rbp, %rsi
enter 020(%rbp)
@ -71,13 +77,18 @@ apply1_fini_feed:
mov 010(%r10), %r13 # amount of args in the original thunk
sub $1, %r13 # amount of args we want to apply (the 1st one is the FUN)
mov %r11, %r14
add %r13, %r14
cmp %r12, %r14 # do we have enough arguments?
lea (%r11, %r13), %r14 # total amount arguments we have
lea 050(%r14), %r15 # how much memory this needs in extreme
needs_alloc %r15
# worst-case memory is: we make a thunk (2 headers + some args) and a
# leftover closure (3 headers + rest of args)
# Now that we have enough memory, do we have enough arguments to do anything?
cmp %r12, %r14
ja apply_fini_o
apply_fini_pt:
# not enough args or exactly enough args.
# Not enough args or exactly enough args.
# Basically make a function or a thunk that is almost the same.
# first move thunk params

View file

@ -1,14 +1,7 @@
.ifndef _data_s_file
_data_s_file:
# Simple values and boxed machine integers
# | ptr | value |
CON_evacuate1:
retq # TODO
CON_scavenge1:
add $020, %rsi
retq
nop # avoid confusing gdb
# Format of the info tables:
# - code
@ -16,27 +9,160 @@ CON_scavenge1:
# - 8B helper information for eval/apply (generally this is 0, and only gets used for FUN/PAP)
# - 8B pointer to scavenge
# - 8B pointer to evacuate
#
# Evacuate interface:
# in: %rbp what to evacuate
# out: %rbp where the thing is now
# ret: jump to _gc_evacuate_ret
# Notes:
# - IND thunks skip themselves on evacuate
# - checking if whether stuff is already in write region are managed by
# _gc_evacuate prelude
#
# Scavenge interface:
# in: %rbp what to scavenge
# out: %rbp next thing to scavenge in memory
# ret: jump to _gc_scavenge_ret
#
# Saved registers during the GC process:
# - _uskel_gc uses %r8-%r11
# - scavenges use %r12-%r15
# - %rax-%rdx is scratch and evacuate use
# Simple values and boxed machine integers
# | ptr | value |
INT_evacuate:
pushq 010(%rbp)
pushq $INT_code
mov %rsp,%rbp
jmp _gc_evacuate_ret
INT_scavenge:
add $020, %rbp
jmp _gc_scavenge_ret
INT_info_table:
cell CON_evacuate1
cell CON_scavenge1
cell INT_evacuate
cell INT_scavenge
cell 0
INT_code:
continue
# Indirection
# | ptr | indptr |
IND_evacuate:
mov 010(%rbp), %rbp
jmp _gc_evacuate
IND_scavenge:
# this should never be triggered but let's play it safe
add $020, %rbp
jmp _gc_scavenge_ret
IND_info:
cell IND_evacuate
cell IND_scavenge
cell 0
IND_code:
enter 010(%rbp)
# Blackhole (contains the original thunkptr for debugging purposes)
# | ptr | orig_thunkptr |
BLE_evacuate:
jmp _gc_evacuate_ret
BLE_scavenge:
jmp _gc_scavenge_ret
BLE_info_table:
cell BLE_evacuate
cell BLE_scavenge
cell 0
BLE_code:
# if we hit this, we've got a pure loop in a program, and it is never
# going to actually progress. So let's just shoot it down with a
# helpful message or so.
mov 010(%rbp), %r15
mov $1, %rdi #stdout
mov $14, %rdx
mov $BLE_msg, %rsi
mov $1, %rax #write
syscall
mov $1, %rdx
BLE_loop:
mov %r15, %rcx
and $0xf, %rcx
mov $BLE_hex, %rsi
add %rcx, %rsi
mov $1, %rax
syscall
shr $4, %r15
jnz BLE_loop
mov $BLE_nl, %rsi
mov $1, %rax
syscall
# shot self down (and retry if it doesn't succeed)
BLE_retry_sigkill:
mov $39, %rax
syscall # getpid
mov %rax, %rdi
mov $6, %rsi # SIGABRT
mov $62, %rax # kill
syscall
jmp BLE_retry_sigkill
BLE_msg:
.ascii "diverged at 0x"
BLE_hex:
.ascii "0123456789abcdef"
BLE_nl:
.ascii "\n"
# List
# | ptr | 0 |
# | ptr | 1 | a | b |
# | ptr | 0 | # [] case
# | ptr | 1 | a | b | # (a:b) case
LIST_evacuate:
# [] | a : b
retq #TODO
cmpq $0, 010(%rbp)
je LIST_evacuate_nil
pushq 030(%rbp)
pushq 020(%rbp)
pushq $1
pushq $LIST_code
mov %rsp, %rbp
jmp _gc_evacuate_ret
LIST_evacuate_nil:
pushq $0
pushq $LIST_code
mov %rsp, %rbp
jmp _gc_evacuate_ret
LIST_scavenge:
mov 010(%rbp), %rax
shl $1, %rax
add $2, %rax
shl $3, %rax
add %rax, %rsi
retq
cmpq $0, 010(%rbp)
je LIST_scavenge_nil
mov %rbp, %r15
mov $LIST_scavenge1, %rsi
mov 020(%r15), %rbp
jmp _gc_evacuate
LIST_scavenge1:
mov %rbp, 020(%r15)
mov $LIST_scavenge2, %rsi
mov 030(%r15), %rbp
jmp _gc_evacuate
LIST_scavenge2:
mov %rbp, 030(%r15)
mov %r15, %rbp
add $040, %rbp
jmp _gc_scavenge_ret
LIST_scavenge_nil:
add $020, %rbp
jmp _gc_scavenge_ret
LIST_info_table:
cell LIST_evacuate
cell LIST_scavenge
@ -47,13 +173,42 @@ LIST_code:
# FUN objects
# | ptr | thunkptr | args | arg[0] | arg[1] | ... | arg[args] |
FUN_evacuate:
retq #TODO
mov 020(%rbp), %rbx # rbx = count of arguments
mov %rbx, %rcx # rcx = count of arguments for later looping
lea 030(%rbp, %rbx, 010), %rdx # rdx = address of the arguments
FUN_evacuate_one:
sub $1, %rcx
jl FUN_evacuate_fini
sub $010, %rdx
pushq (%rdx)
jmp FUN_evacuate_one
FUN_evacuate_fini:
pushq %rbx
pushq 010(%rbp)
pushq 000(%rbp)
mov %rsp, %rbp
jmp _gc_evacuate_ret
FUN_scavenge:
mov 020(%rbp), %rax
add $3, %rax
shl $3, %rax
add %rax, %rsi
retq
mov 020(%rbp), %r13 # r13 = count of arguments (for looping)
mov %rbp, %r15 # r15 = scavengee ptr
lea 030(%rbp, %r13, 010), %r14 # r14 = address of argument
FUN_scavenge_one:
sub $1, %r13
jl FUN_scavenge_fini
sub $010, %r14
mov (%r14), %rbp
mov $FUN_scavenge_one_cont, %rsi
jmp _gc_evacuate
FUN_scavenge_one_cont:
mov %rbp, (%r14)
jmp FUN_scavenge_one
FUN_scavenge_fini:
mov %r15, %rbp # restore rbp
mov 020(%rbp), %r14
lea 030(%rbp, %r14, 010), %rbp
jmp _gc_scavenge_ret
# Info tables for FUN objects.
FUN0_info_table:
@ -90,39 +245,46 @@ FUN4_info_table:
cell 4
FUN4_code:
continue
# add more funN here as needed
# TODO: add more funN here as needed
# indirection (Q: how to recognize IND and THUNK on return?)
# | ptr | indptr |
IND_evacuate:
retq #TODO
IND_scavenge:
add $020,%rsi
retq
IND_info:
cell IND_evacuate
cell IND_scavenge
cell 0
IND_code:
enter 010(%rbp)
# THU objects (gc implementation only, actual THUs are defined by functions)
# THU objects (gc implementation only, actual THU data are created by functions)
# | ptr | args | arg[0] | arg[1] | ... | arg[args] |
# args wouldn't need to be here but let's keep them for gc simplicity
THU_evacuate:
retq #TODO
mov 010(%rbp), %rbx # rbx = count of arguments
mov %rbx, %rcx # rcx = count of arguments for later looping
lea 020(%rbp, %rbx, 010), %rdx # rdx = address of the argument
THU_evacuate_one:
sub $1, %rcx
jl THU_evacuate_fini
sub $010, %rdx
pushq (%rdx)
jmp THU_evacuate_one
THU_evacuate_fini:
pushq %rbx
pushq 000(%rbp)
mov %rsp, %rbp
jmp _gc_evacuate_ret
THU_scavenge:
mov 010(%rbp), %rax
add $2,%rax
shl $3,%rax
add %rax,%rsi
retq
mov 010(%rbp), %r13 # r13 = count of arguments (for looping)
mov %rbp, %r15 # r15 = scavengee ptr
lea 020(%rbp, %r13, 010), %r14 # r14 = address of argument
THU_scavenge_one:
sub $1, %r13
jl THU_scavenge_fini
sub $010, %r14
mov (%r14), %rbp
mov $THU_scavenge_one_cont, %rsi
jmp _gc_evacuate
THU_scavenge_one_cont:
mov %rbp, (%r14)
jmp THU_scavenge_one
THU_scavenge_fini:
mov %r15, %rbp # restore rbp
mov 010(%rbp), %r14
lea 020(%rbp, %r14, 010), %rbp
jmp _gc_scavenge_ret
.endif # _data_s_file
# evacuate and scavenge:
# - evacuate just copies the object
# - scavenge evacuates all children (to the new location IF they are in the old
# location), changes the pointer, and moves the scavenge pointer to the next
# object (because everything needs to be scavenged)

210
include/gc.s Normal file
View file

@ -0,0 +1,210 @@
.ifndef _gc_s_file
_gc_s_file:
.section .bss
_write_region_start:
# begin of the active memory area
cell 0
_write_region_end:
# end of the active memory area (%rsp kinda starts here and goes down
# towars the start)
cell 0
_gc_trigger:
# point in memory where the gc will trigger (we don't necessarily wait for the write region to fill up!)
cell 0
_gc_last_size:
# how much data we evacuated last time
cell 0
_gc_min_alloc:
# minimum possible allocation
cell 0 # tunable constant
_gc_grow_ratio:
# 256th's of the minimal amount of memory increment compared to the
# last time. New minimal amount is compared as:
# (ratio * last size) >> 8
cell 0 # tunable constant
_gc_shrink_ratio:
# 256th's of the ratio of post-gc still-free to-space that should be considered for discarding
cell 0
_gc_region_start:
# in GC, this region is being evacuated and will eventually disappear
cell 0
_gc_region_end:
# end of the disappear region
cell 0
_gc_backup_thunk:
# backup of %rsi so that we can use the register for other nonsense
cell 0
_gc_backup_cont:
# backup of %rbp for same reason
cell 0
.section .text
.macro needs_alloc amount
mov %rsp, %rax
sub _write_region_start, %rax
cmp \amount, %rax
jb _uskel_gc
.endm
_uskel_alloc:
mov %rsi, %r15 # %rsi is the return address; back it up
# calculate the desired size to %r14
mov _gc_min_alloc, %r14
#add _gc_region_end, %r14
#sub _gc_region_start, %r14
# check if the desired size isn't greater because of the last gc use
mov _gc_last_size, %rax
mulq _gc_grow_ratio
shr $8, %rax
add _gc_min_alloc, %rax
cmp %r14, %rax
cmova %rax, %r14
# check if we don't need even more space because we need to evacuate stuff
mov _gc_region_end, %rax
sub %rsp, %rax # trick -- if we counted from gc region start, allocated memory could never shrink
cmp %r14, %rax
cmova %rax, %r14
and $0xfffffffffffffff8, %r14 #align
alloc_goes_mmap:
mov $9, %rax # mmap
mov $0, %rdi # addr = NULL
mov %r14, %rsi # len = %r14
mov $0b11, %rdx # prot = PROT_READ 0b1 | PROT_WRITE 0b10
mov $0x22, %r10 # flags = MAP_PRIVATE 0x2 | MAP_ANONYMOUS 0x20
mov $-1, %r8 # fd = -1
mov $0, %r9 # off = 0
syscall
# store the results
mov %rax, _write_region_start
add %r14, %rax
mov %rax, _write_region_end
mov %rax, %rsp # initialize writing into the new region
jmp *%r15
_uskel_gc_init:
mov %rsi, %r13
movq $0x100000, _gc_min_alloc # must be higher than 2x the biggest thunk possible
movq $0x180, _gc_grow_ratio
movq $0x40, _gc_shrink_ratio
mov $0, %rsp # fake original rsp for first alloc run
mov $_uskel_gc_init_cont, %rsi
jmp _uskel_alloc
_uskel_gc_init_cont:
mov _write_region_start, %rax
mov %rax, _gc_trigger
jmp *%r13
_uskel_gc:
# save what we did before ending up here
mov %rbp, _gc_backup_thunk
mov %rsi, _gc_backup_cont
# first we need a new memory area
mov _write_region_start, %rbx
mov _write_region_end, %rcx
mov %rbx, _gc_region_start
mov %rcx, _gc_region_end
mov $_uskel_gc_evacuate, %rsi
jmp _uskel_alloc
_uskel_gc_evacuate:
# point the writer to the new memory area
mov _write_region_end, %rsp
mov %rsp, %r8 # % r8 is the "last thing that was scavenged"
# start by evacuating the thunk and cont
mov _gc_backup_thunk, %rbp
mov $_uskel_gc_evacuate_cont_thunk, %rsi
jmp _gc_evacuate
_uskel_gc_evacuate_cont_thunk:
mov %rbp, _gc_backup_thunk
mov _gc_backup_cont, %rbp
mov $_uskel_gc_evacuate_cont_cont, %rsi
jmp _gc_evacuate
_uskel_gc_evacuate_cont_cont:
mov %rbp, _gc_backup_cont
# scavenge everything
_uskel_gc_scavenge:
# start at what we wrote last
mov %rsp, %rbp # rbp is the iterator (conveniently)
mov %rsp, %r9 # % r9 stores where we started with this evacuate round
# if the thing is already scavenged, we didn't write anything, mark done.
cmp %rbp, %r8
jbe _uskel_gc_scavenge_end
_uskel_gc_scavenge1:
# if all ok, scavenge one thing (moving %rbp) and recheck
mov (%rbp), %rax
jmp *-020(%rax) # scavenge position in infotable
_gc_scavenge_ret:
cmp %rbp, %r8
ja _uskel_gc_scavenge1
# everything above r9 is now scavenged, continue with next round
mov %r9, %r8 # we started at r9, so that is now "done"
jmp _uskel_gc_scavenge
_uskel_gc_scavenge_end:
# deallocate the old memory region
mov $11, %rax # munmap
mov _gc_region_end, %rsi
mov _gc_region_start, %rdi # addr = gc start
sub %rdi, %rsi # len = gc end - gc start
syscall
# recalculate the gc trigger point
mov %rsp, %rax
sub _write_region_start, %rax
mulq _gc_shrink_ratio
shr $8, %rax
add _write_region_start, %rax
mov %rax, _gc_trigger
# save how much data we actually had at this point
mov _write_region_end, %rax
sub %rsp, %rax
mov %rax, _gc_last_size
# restore what we were doing
mov _gc_backup_thunk, %rbp
mov _gc_backup_cont, %rsi
enter_rbp # for simplicity just restart the thunk
_gc_evacuate:
# check if we are really out of the target region
cmp _write_region_start, %rbp
jb _gc_evacuate_go
cmp _write_region_end, %rbp
jae _gc_evacuate_go
_gc_evacuate_skip:
# if not, let's just jump to cont and leave %rbp as result
jmp *%rsi
_gc_evacuate_go:
# if we should evacuate, jump to the evac routine
mov %rbp, %r10
mov (%rbp), %rax
jmp *-030(%rax)
_gc_evacuate_ret:
# install the indirection
movq $IND_code, 000(%r10)
mov %rbp, 010(%r10)
jmp *%rsi
.endif #_gc_s_file

View file

@ -5,13 +5,13 @@ _intops_s_file:
.include "include/primops.s"
.primop2 plus
mov 010(%rsi), %rax # arg 2
mov 010(%rsi), %rax # arg 2
mov 020(%rbp), %rsi # location of arg1
add 010(%rsi), %rax # arg 1
primop2_ret_int %rax
.primop2 mul
mov 010(%rsi), %rax # arg 2
mov 010(%rsi), %rax # arg 2
mov 020(%rbp), %rsi # location of arg1
mulq 010(%rsi) # arg 1 (goes to %rax and %rdx)
primop2_ret_int %rax
@ -19,7 +19,7 @@ _intops_s_file:
.primop2 sub
mov 020(%rbp), %rdi # location of arg1
mov 010(%rdx), %rax # arg 1
sub 010(%rsi), %rax # arg 2
sub 010(%rsi), %rax # arg 2
primop2_ret_int %rax
.endif # _intops_s_file

View file

@ -4,11 +4,13 @@ _io_s_file:
# | int | -> cont
.thunkcode print
needs_alloc $040
thunkto %rsi, $print_fini, $2, %rbp, %rsi
enter 020(%rbp)
# arg -> | ret | cont |
.thunkcode print_fini
needs_alloc $0110 #64 bit characters + 8 backup
mov 010(%rsi), %rax
# make a string
@ -24,7 +26,7 @@ _io_s_file:
shr $1, %rax
jnz print_fini_loop
mov $0, %rdi #stdin
mov $1, %rdi #stdout
mov %rsp, %rdx
sub %r15, %rdx #size
mov %r15, %rsi #buf

View file

@ -6,6 +6,8 @@ _listops_s_file:
# | n | list | -> cont
.primop2 list_int_index
needs_alloc $060
mov 010(%rsi), %rdx # the list constructor id, must be 1
cmp $1, %rdx
jne list_int_index_not_found

View file

@ -1,13 +1,10 @@
.ifndef _main_exit_s_file
_main_exit_s_file:
# exitcode -> | cont (unused, should be 0) |
# exitcode -> ||
.thunkcode main_exit
mov 010(%rsi), %rdi # result goes to syscall exitcode
mov 010(%rsi), %rdi # result INT goes to syscall exitcode
mov $60, %rax # exit=60
syscall # exit %rdi
# TODO this is a "case" kind of thunk so it's quite likely that it really
# doesn't need the continuation.
.endif # _main_exit_s_file

View file

@ -9,6 +9,7 @@ _primops_s_file:
.macro .primop1 name
# | arg1 | -> cont
.thunkcode \name
needs_alloc $040
# push a thunk for collecting the first arg and set it as continuation
thunkto %rsi, $\name\()_fini, $2, %rbp, %rsi
enter 020(%rbp) # evaluate arg1
@ -39,6 +40,7 @@ _primops_s_file:
.macro .primop2 name
# | arg1 | arg2 | -> cont
.thunkcode \name
needs_alloc $050
# push a thunk for collecting the first arg and set it as continuation
thunkto %rsi, $\name\()_step1, $3, 030(%rbp), %rbp, %rsi
enter 020(%rbp) # evaluate arg1

View file

@ -9,46 +9,34 @@ _start:
.include "include/macros.s"
.section .bss
_memory_state:
cell 0 # bottom of allocation (grows down)
cell 0 # region start
cell 0 # region end
cell 0 # program entry rsp (aka the actual stack)
_unix_rsp:
# back-up of program entry rsp (aka the actual stack given by the
# actual OS; we might like to use it at some point, maybe)
cell 0
.include "include/gc.s"
.section .text
_uskel_alloc_basic_mem:
mov $0x100000, %r15 # desired size
mov $9, %rax # mmap
mov $0, %rdi # addr = NULL
mov %r15, %rsi # len = %rcx
mov $0b11, %rdx # prot = PROT_READ 0b1 | PROT_WRITE 0b10
mov $0x22, %r10 # flags = MAP_PRIVATE 0x2 | MAP_ANONYMOUS 0x20
mov $-1, %r8 # fd = -1
mov $0, %r9 # off = 0
syscall
mov $_memory_state, %rdi
mov %rax, 010(%rdi)
add %r15, %rax
mov %rax, (%rdi)
mov %rax, 020(%rdi)
retq
_uskel_start:
call _uskel_alloc_basic_mem
# use the stack pointer for easy writing to the heap,
# but back it up to memory state
mov $_memory_state, %rdi
mov %rsp, 030(%rdi)
mov 0(%rdi), %rsp
# we use the stack pointer for easy writing to the heap;
# back it up to memory state just if we ever needed it again.
mov %rsp, _unix_rsp
# allocate the initial chunk of memory
mov $_uskel_start_main, %rsi
jmp _uskel_gc_init
_uskel_start_main:
# push a thunk for main
pushq $0
pushq $main
mov $0, %rsi # set continuation to exit
# loop the continuation to itself (prevents gc trouble, should never be reached)
mov %rsp, %rsi
enter %rsp # run the program
# Q: are there gonna be functions that have both the argument AND the cont?
# A: No, stuff is either entered as return-continuation (takes res, cont has to be saved) or as forward call (takes cont)
# (needs validation)
# A: No, stuff is either entered as return-continuation (takes res,
# cont has to be saved) or as forward call (takes cont)
#
# (A needs validation)

View file

@ -7,6 +7,7 @@
# || -> cont
.thunkcode main
needs_alloc $0160
# push a new integer
thunkto %r11, $INT_code, $100
@ -20,7 +21,7 @@
thunkto %r11, $print, $1, %r11
# push a cont thunk for main_exit and set continuation for main_exit
thunkto %rsi, $main_exit, $1, %rsi
thunkto %rsi, $main_exit, $0
# evaluate into main_exit
enter %r11

43
sum.s Normal file
View file

@ -0,0 +1,43 @@
.include "include/uskel.s"
.include "include/data.s"
.include "include/io.s"
.include "include/intops.s"
.primop1 sumn
needs_alloc $0110
mov 010(%rsi), %rax
test %rax, %rax
jz sumn_zero
dec %rax
thunkto %r10, $INT_code, %rax
thunkto %r10, $sumn, $1, %r10
thunkto %r10, $plus, $2, %rsi, %r10 #TODO try the other way?
primop1_cont_indirect %r10
sumn_zero:
primop1_ret_int $0
# || -> cont
.thunkcode main
needs_alloc $0160
# push a new integer
thunkto %r11, $INT_code, $10000000
# push the plus
thunkto %r11, $sumn, $1, %r11
# push the print
thunkto %r11, $print, $1, %r11
# push a cont thunk for main_exit
thunkto %rsi, $main_exit, $0
# evaluate into main_exit
enter %r11
.include "include/main_exit.s"

40
sumac.s Normal file
View file

@ -0,0 +1,40 @@
.include "include/uskel.s"
.include "include/data.s"
.include "include/io.s"
.include "include/intops.s"
.primop2 sumac
needs_alloc $0100
mov 020(%rbp), %rdi #1st arg
mov 010(%rdi), %rcx #1st arg val
mov 010(%rsi), %rax #2nd arg val
cmp $0, %rcx
jz sumac_ret
add %rcx, %rax
dec %rcx
thunkto %r10, $INT_code, %rcx
thunkto %r11, $INT_code, %rax
thunkto %r10, $sumac, $2, %r10, %r11
primop2_cont_indirect %r10
sumac_ret:
primop2_ret_int %rax
.thunkcode main
needs_alloc $0150
thunkto %r11, $INT_code, $10000000
thunkto %r12, $INT_code, $0
thunkto %r11, $sumac, $2, %r11, %r12
thunkto %r11, $print, $1, %r11
thunkto %rsi, $main_exit, $0
enter %r11
.include "include/main_exit.s"

67
zipfib.s Normal file
View file

@ -0,0 +1,67 @@
.include "include/uskel.s"
.include "include/listops.s"
.include "include/intops.s"
.include "include/io.s"
.include "include/main_exit.s"
.include "include/apply.s"
# TODO this seems to fill the memory with plus_fini thunks; find out why.
.thunkcode zipWith
needs_alloc $070
thunkto %rsi, $zipWith_arg1, $5, 020(%rbp), 030(%rbp), 040(%rbp), %rbp, %rsi
enter 030(%rbp)
.thunkcode zipWith_arg1
movq $zipWith_fini, (%rbp)
mov %rsi, 030(%rbp)
mov %rbp, %rsi
mov 040(%rbp), %rbp
enter_rbp
.thunkcode zipWith_fini
needs_alloc $0150
mov 030(%rbp), %r8 # arg1
mov %rsi, %r9 # arg2
cmpq $0, 010(%r8)
je zipWith_null
cmpq $0, 010(%r9)
je zipWith_null
# f (head arg1) (head arg2) : zipWith f (tail arg1) (tail arg2)
thunkto %r10, $zipWith, $3, 020(%rbp), 030(%r8), 030(%r9)
thunkto %r11, $apply, $3, 020(%rbp), 020(%r8), 020(%r9)
thunkto %rsi, $LIST_code, $1, %r11, %r10
zipWith_ret:
mov 050(%rbp), %r8
movq $IND_code, 000(%r8)
mov %rsi, 010(%r8)
mov 060(%rbp), %rbp
enter_rbp
zipWith_null:
thunkto %rsi, $LIST_code, $0
jmp zipWith_ret
.thunkcode main
needs_alloc $0370
# x = 0 : 1 : zipWith plus x (tail x)
thunkto %r8, $FUN2_code, $plus, $0
thunkto %r8, $zipWith, $3, %r8, $0, $0
thunkto %r9, $INT_code, $1
thunkto %r9, $LIST_code, $1, %r9, %r8
thunkto %r10, $INT_code, $0
thunkto %r10, $LIST_code, $1, %r10, %r9
# recurse args!
mov %r10, 030(%r8)
mov %r9, 040(%r8)
thunkto %r8, $INT_code, $20
thunkto %r8, $list_int_index, $2, %r8, %r10
thunkto %r8, $print, $1, %r8
thunkto %rsi, $main_exit, $0
enter %r8