mce_qd: much faster H to G inversion

This commit is contained in:
Mirek Kratochvil 2012-10-25 19:37:51 +02:00
parent 9620632e84
commit 027e097b9b
3 changed files with 158 additions and 47 deletions

View file

@ -43,6 +43,7 @@ public:
void add (const bvector&); void add (const bvector&);
void add_range (const bvector&, uint, uint); void add_range (const bvector&, uint, uint);
void add_offset (const bvector&, uint); void add_offset (const bvector&, uint);
void set_block (const bvector&, uint);
void get_block (uint, uint, bvector&) const; void get_block (uint, uint, bvector&) const;
bool operator* (const bvector&); //dot product bool operator* (const bvector&); //dot product
bool zero() const; bool zero() const;

View file

@ -30,6 +30,13 @@ void bvector::add_offset (const bvector&a, uint offset)
item (offset + i) = item (offset + i) ^ a[i]; item (offset + i) = item (offset + i) ^ a[i];
} }
void bvector::set_block (const bvector&a, uint offset)
{
if (offset + a.size() > size() ) resize (offset + a.size(), 0);
for (uint i = 0; i < a.size(); ++i)
item (offset + i) = a[i];
}
void bvector::get_block (uint offset, uint bs, bvector&out) const void bvector::get_block (uint offset, uint bs, bvector&out) const
{ {
if (offset + bs > size() ) return; if (offset + bs > size() ) return;

View file

@ -139,12 +139,13 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
block_count = h_block_count - block_discard; block_count = h_block_count - block_discard;
//assemble blocks to bl //assemble blocks to bl
std::vector<std::vector<uint> > bl, blp; std::vector<polynomial> bl, blp;
bl.resize (h_block_count); bl.resize (h_block_count);
for (uint i = 0; i < h_block_count; ++i) for (uint i = 0; i < h_block_count; ++i) {
bl[i] = std::vector<uint> bl[i].resize (block_size);
(Hsig.begin() + i * block_size, for (uint j = 0; j < block_size; ++j)
Hsig.begin() + (i + 1) * block_size); bl[i][j] = Hsig[i * block_size + j];
}
std::cout << "permuting blocks..." << std::endl; std::cout << "permuting blocks..." << std::endl;
//permute them //permute them
@ -165,59 +166,166 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
blp[i], bl[i]); blp[i], bl[i]);
} }
//co-trace blocks to binary H^, retry creating G using hperm.
matrix Hc;
polynomial col;
Hc.resize (block_count * block_size);
matrix r, ri, l;
//try several permutations to construct G //try several permutations to construct G
uint attempts = 0; uint attempts = 0;
for (attempts = 0; attempts < block_count; ++attempts) { for (attempts = 0; attempts < block_count; ++attempts) {
std::cout << "generating G..." << std::endl; std::cout << "generating G..." << std::endl;
priv.hperm.generate_random (block_count, rng);
for (uint i = 0; i < block_count; ++i)
for (uint j = 0; j < block_size; ++j) {
permutation::permute_dyadic
(j, bl[priv.hperm[i]], col);
Hc[i * block_size + j].from_poly_cotrace
(col, fld);
}
/* /*
* try computing the redundancy block of G * try computing the redundancy block of G
* *
* First, co-trace H, then compute G in form
*
* G^T = [I | X]
*
* Since H*G^T = [L | R] * [I | X] = L + R*X = 0 * Since H*G^T = [L | R] * [I | X] = L + R*X = 0
* we have the solution: X = R^1 * L * we have the solution: X = R^1 * L
* (thanks to Rafael Misoczki)
*
* Inversion is done the quasi-dyadic way:
*
* - because for QD matrix m=delta(h) the product
* m*m = sum(h) * I, binary QD matrix m is either
* inversion of itself (m*m=I) or isn't invertible
* and m*m=0. sum(h), the "count of ones in QD
* signature mod 2", easily determines the result.
*
* - Using blockwise invertions/multiplications,
* gaussian elimination needed to invert the right
* square of H can be performed in O(m^2*block_count)
* matrix operations. Matrix operations are either
* addition (O(t) on QDs), multiplication(O(t log t)
* on QDs) or inversion (O(t), as shown above).
* Whole proces is therefore quite fast.
*
* Gaussian elimination on the QD signature should
* result in something like this: (for m=3, t=4)
*
* 1010 0101 1001 1000 0000 0000
* 0101 1100 1110 0000 1000 0000
* 0111 1110 0100 0000 0000 1000
*/ */
Hc.get_right_square (r); priv.hperm.generate_random (block_count, rng);
std::cout << "RIGHT SQUARE " << r;
if (!r.compute_inversion (ri) ) std::vector<std::vector<bvector> > hblocks;
continue; //retry with other code bvector tmp;
std::cout << "Rinv " << ri; bool failed;
Hc.strip_right_square (l); uint i, j, k, l;
ri.mult (l);
std::cout << "l " << ri; //prepare blocks of h
hblocks.resize (block_count);
for (i = 0; i < block_count; ++i)
hblocks[i].resize (fld.m);
//fill them from Hsig
for (i = 0; i < block_count; ++i) {
tmp.from_poly_cotrace (bl[priv.hperm[i]], fld);
for (j = 0; j < fld.m; ++j)
tmp.get_block (j * block_size,
block_size,
hblocks[i][j]);
}
/* now do a modified gaussian elimination on hblocks */
failed = false;
tmp.resize (block_size);
for (i = 0; i < fld.m; ++i) { //gauss step
//first, find a nonsingular matrix in the column
for (j = i; j < fld.m; ++j)
if (hblocks[block_count - fld.m + i][j]
.hamming_weight() % 2) break;
if (j >= fld.m) { //none found, break;
failed = true;
break;
}
//bring it to correct position (swap it to i-th row)
if (j > i) for (k = 0; k < block_count; ++k)
hblocks[k][i].swap
(hblocks[k][j]);
//now normalize the row
for (j = i; j < fld.m; ++j) {
uint l = hblocks
[block_count - fld.m + i]
[j].hamming_weight();
if (l == 0) continue; //zero is just okay :]
if (! (l % 2) ) //singular, make it regular by adding the i-th row
for (k = 0;
k < block_count;
++k)
hblocks[k][j].add
(hblocks[k][i]);
//now a matrix is regular, we can easily make it I
for (k = 0; k < block_count; ++k) {
fwht_dyadic_multiply
(hblocks[block_count - fld.m + i][j],
hblocks[k][j], tmp);
hblocks[k][j] = tmp;
}
//and zero the column below diagonal
if (j > i) for (k = 0; k < block_count; ++k)
hblocks[k][j].add
(hblocks[k][i]);
}
}
if (failed) continue;
for (i = 0; i < fld.m; ++i) { //jordan step
//normalize diagonal (it's already nonsingular)
for (k = 0; k < block_count; ++k) {
fwht_dyadic_multiply
(hblocks[block_count - i - 1][fld.m - i - 1],
hblocks[k][fld.m - i - 1], tmp);
hblocks[k][fld.m - i - 1] = tmp;
}
//now make zeroes above
for (j = i + 1; j < fld.m; ++j) {
l = hblocks[block_count - i - 1]
[fld.m - j - 1].hamming_weight();
if (l == 0) continue; //already zero
if (! (l % 2) ) { //nonsingular, fix it by adding diagonal
for (k = 0; k < block_count; ++k)
hblocks[k][fld.m - j - 1].add
(hblocks[k][fld.m - i - 1]);
}
for (k = 0; k < block_count; ++k) {
fwht_dyadic_multiply
(hblocks[block_count - i - 1]
[fld.m - j - 1],
hblocks[k][fld.m - j - 1], tmp);
hblocks[k][fld.m - j - 1] = tmp;
}
//I+I=0
for (k = 0; k < block_count; ++k)
hblocks[k][fld.m - j - 1].add
(hblocks[k][fld.m - i - 1]);
}
}
if (failed) continue;
pub.qd_sigs.resize (block_count - fld.m);
for (uint i = 0; i < block_count - fld.m; ++i) {
pub.qd_sigs[i].resize (block_size * fld.m);
for (uint j = 0; j < fld.m; ++j)
pub.qd_sigs[i].set_block
(hblocks[i][j], block_size * j);
}
//finish the pubkey
pub.T = T;
break; break;
} }
if (attempts == block_count) //generating G failed, retry all if (attempts == block_count) //generating G failed, retry all
continue; continue;
/*
* Redundancy-checking part of G is now (transposed) in ri.
* Get QD signatures by getting every t'th row (transposed).
*/
std::cout << "pubkey..." << std::endl;
pub.T = T;
pub.qd_sigs.resize (ri.width() / t);
for (uint i = 0; i < ri.width(); i += t)
pub.qd_sigs[i / t] = ri[i];
return 0; return 0;
} }
} }
@ -274,7 +382,7 @@ int privkey::prepare()
return 0; return 0;
} }
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng) int pubkey::encrypt (const bvector & in, bvector & out, prng & rng)
{ {
uint t = 1 << T; uint t = 1 << T;
bvector p, g, r, cksum; bvector p, g, r, cksum;
@ -296,10 +404,6 @@ int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
g.resize (t); g.resize (t);
r.resize (t); r.resize (t);
for (i = 0; i < qd_sigs.size(); ++i) {
std::cout << "Signature line " << i << ": " << qd_sigs[i];
}
for (i = 0; i < qd_sigs.size(); ++i) { for (i = 0; i < qd_sigs.size(); ++i) {
//plaintext block //plaintext block
in.get_block (i * t, t, p); in.get_block (i * t, t, p);
@ -330,13 +434,12 @@ int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
//compute ciphertext //compute ciphertext
out = in; out = in;
out.insert (out.end(), cksum.begin(), cksum.end() ); out.insert (out.end(), cksum.begin(), cksum.end() );
std::cout << "without errors: " << out;
out.add (e); out.add (e);
return 0; return 0;
} }
int privkey::decrypt (const bvector&in, bvector&out) int privkey::decrypt (const bvector & in, bvector & out)
{ {
if (in.size() != cipher_size() ) return 2; if (in.size() != cipher_size() ) return 2;