mce_qd: much faster H to G inversion
This commit is contained in:
parent
9620632e84
commit
027e097b9b
|
@ -43,6 +43,7 @@ public:
|
|||
void add (const bvector&);
|
||||
void add_range (const bvector&, uint, uint);
|
||||
void add_offset (const bvector&, uint);
|
||||
void set_block (const bvector&, uint);
|
||||
void get_block (uint, uint, bvector&) const;
|
||||
bool operator* (const bvector&); //dot product
|
||||
bool zero() const;
|
||||
|
|
|
@ -30,6 +30,13 @@ void bvector::add_offset (const bvector&a, uint offset)
|
|||
item (offset + i) = item (offset + i) ^ a[i];
|
||||
}
|
||||
|
||||
void bvector::set_block (const bvector&a, uint offset)
|
||||
{
|
||||
if (offset + a.size() > size() ) resize (offset + a.size(), 0);
|
||||
for (uint i = 0; i < a.size(); ++i)
|
||||
item (offset + i) = a[i];
|
||||
}
|
||||
|
||||
void bvector::get_block (uint offset, uint bs, bvector&out) const
|
||||
{
|
||||
if (offset + bs > size() ) return;
|
||||
|
|
197
lib/mce_qd.cpp
197
lib/mce_qd.cpp
|
@ -139,12 +139,13 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
block_count = h_block_count - block_discard;
|
||||
|
||||
//assemble blocks to bl
|
||||
std::vector<std::vector<uint> > bl, blp;
|
||||
std::vector<polynomial> bl, blp;
|
||||
bl.resize (h_block_count);
|
||||
for (uint i = 0; i < h_block_count; ++i)
|
||||
bl[i] = std::vector<uint>
|
||||
(Hsig.begin() + i * block_size,
|
||||
Hsig.begin() + (i + 1) * block_size);
|
||||
for (uint i = 0; i < h_block_count; ++i) {
|
||||
bl[i].resize (block_size);
|
||||
for (uint j = 0; j < block_size; ++j)
|
||||
bl[i][j] = Hsig[i * block_size + j];
|
||||
}
|
||||
|
||||
std::cout << "permuting blocks..." << std::endl;
|
||||
//permute them
|
||||
|
@ -165,59 +166,166 @@ int mce_qd::generate (pubkey&pub, privkey&priv, prng&rng,
|
|||
blp[i], bl[i]);
|
||||
}
|
||||
|
||||
//co-trace blocks to binary H^, retry creating G using hperm.
|
||||
matrix Hc;
|
||||
polynomial col;
|
||||
Hc.resize (block_count * block_size);
|
||||
|
||||
matrix r, ri, l;
|
||||
|
||||
//try several permutations to construct G
|
||||
uint attempts = 0;
|
||||
for (attempts = 0; attempts < block_count; ++attempts) {
|
||||
std::cout << "generating G..." << std::endl;
|
||||
priv.hperm.generate_random (block_count, rng);
|
||||
|
||||
for (uint i = 0; i < block_count; ++i)
|
||||
for (uint j = 0; j < block_size; ++j) {
|
||||
permutation::permute_dyadic
|
||||
(j, bl[priv.hperm[i]], col);
|
||||
Hc[i * block_size + j].from_poly_cotrace
|
||||
(col, fld);
|
||||
}
|
||||
|
||||
/*
|
||||
* try computing the redundancy block of G
|
||||
*
|
||||
* First, co-trace H, then compute G in form
|
||||
*
|
||||
* G^T = [I | X]
|
||||
*
|
||||
* Since H*G^T = [L | R] * [I | X] = L + R*X = 0
|
||||
* we have the solution: X = R^1 * L
|
||||
* (thanks to Rafael Misoczki)
|
||||
*
|
||||
* Inversion is done the quasi-dyadic way:
|
||||
*
|
||||
* - because for QD matrix m=delta(h) the product
|
||||
* m*m = sum(h) * I, binary QD matrix m is either
|
||||
* inversion of itself (m*m=I) or isn't invertible
|
||||
* and m*m=0. sum(h), the "count of ones in QD
|
||||
* signature mod 2", easily determines the result.
|
||||
*
|
||||
* - Using blockwise invertions/multiplications,
|
||||
* gaussian elimination needed to invert the right
|
||||
* square of H can be performed in O(m^2*block_count)
|
||||
* matrix operations. Matrix operations are either
|
||||
* addition (O(t) on QDs), multiplication(O(t log t)
|
||||
* on QDs) or inversion (O(t), as shown above).
|
||||
* Whole proces is therefore quite fast.
|
||||
*
|
||||
* Gaussian elimination on the QD signature should
|
||||
* result in something like this: (for m=3, t=4)
|
||||
*
|
||||
* 1010 0101 1001 1000 0000 0000
|
||||
* 0101 1100 1110 0000 1000 0000
|
||||
* 0111 1110 0100 0000 0000 1000
|
||||
*/
|
||||
|
||||
Hc.get_right_square (r);
|
||||
std::cout << "RIGHT SQUARE " << r;
|
||||
if (!r.compute_inversion (ri) )
|
||||
continue; //retry with other code
|
||||
std::cout << "Rinv " << ri;
|
||||
Hc.strip_right_square (l);
|
||||
ri.mult (l);
|
||||
std::cout << "l " << ri;
|
||||
priv.hperm.generate_random (block_count, rng);
|
||||
|
||||
std::vector<std::vector<bvector> > hblocks;
|
||||
bvector tmp;
|
||||
bool failed;
|
||||
uint i, j, k, l;
|
||||
|
||||
//prepare blocks of h
|
||||
hblocks.resize (block_count);
|
||||
for (i = 0; i < block_count; ++i)
|
||||
hblocks[i].resize (fld.m);
|
||||
|
||||
//fill them from Hsig
|
||||
for (i = 0; i < block_count; ++i) {
|
||||
tmp.from_poly_cotrace (bl[priv.hperm[i]], fld);
|
||||
for (j = 0; j < fld.m; ++j)
|
||||
tmp.get_block (j * block_size,
|
||||
block_size,
|
||||
hblocks[i][j]);
|
||||
}
|
||||
|
||||
/* now do a modified gaussian elimination on hblocks */
|
||||
failed = false;
|
||||
tmp.resize (block_size);
|
||||
for (i = 0; i < fld.m; ++i) { //gauss step
|
||||
//first, find a nonsingular matrix in the column
|
||||
for (j = i; j < fld.m; ++j)
|
||||
if (hblocks[block_count - fld.m + i][j]
|
||||
.hamming_weight() % 2) break;
|
||||
if (j >= fld.m) { //none found, break;
|
||||
failed = true;
|
||||
break;
|
||||
}
|
||||
|
||||
//bring it to correct position (swap it to i-th row)
|
||||
if (j > i) for (k = 0; k < block_count; ++k)
|
||||
hblocks[k][i].swap
|
||||
(hblocks[k][j]);
|
||||
|
||||
//now normalize the row
|
||||
for (j = i; j < fld.m; ++j) {
|
||||
uint l = hblocks
|
||||
[block_count - fld.m + i]
|
||||
[j].hamming_weight();
|
||||
if (l == 0) continue; //zero is just okay :]
|
||||
if (! (l % 2) ) //singular, make it regular by adding the i-th row
|
||||
for (k = 0;
|
||||
k < block_count;
|
||||
++k)
|
||||
hblocks[k][j].add
|
||||
(hblocks[k][i]);
|
||||
|
||||
//now a matrix is regular, we can easily make it I
|
||||
for (k = 0; k < block_count; ++k) {
|
||||
fwht_dyadic_multiply
|
||||
(hblocks[block_count - fld.m + i][j],
|
||||
hblocks[k][j], tmp);
|
||||
hblocks[k][j] = tmp;
|
||||
}
|
||||
|
||||
//and zero the column below diagonal
|
||||
if (j > i) for (k = 0; k < block_count; ++k)
|
||||
hblocks[k][j].add
|
||||
(hblocks[k][i]);
|
||||
}
|
||||
}
|
||||
|
||||
if (failed) continue;
|
||||
|
||||
for (i = 0; i < fld.m; ++i) { //jordan step
|
||||
//normalize diagonal (it's already nonsingular)
|
||||
for (k = 0; k < block_count; ++k) {
|
||||
fwht_dyadic_multiply
|
||||
(hblocks[block_count - i - 1][fld.m - i - 1],
|
||||
hblocks[k][fld.m - i - 1], tmp);
|
||||
hblocks[k][fld.m - i - 1] = tmp;
|
||||
}
|
||||
|
||||
//now make zeroes above
|
||||
for (j = i + 1; j < fld.m; ++j) {
|
||||
l = hblocks[block_count - i - 1]
|
||||
[fld.m - j - 1].hamming_weight();
|
||||
if (l == 0) continue; //already zero
|
||||
if (! (l % 2) ) { //nonsingular, fix it by adding diagonal
|
||||
for (k = 0; k < block_count; ++k)
|
||||
hblocks[k][fld.m - j - 1].add
|
||||
(hblocks[k][fld.m - i - 1]);
|
||||
}
|
||||
for (k = 0; k < block_count; ++k) {
|
||||
fwht_dyadic_multiply
|
||||
(hblocks[block_count - i - 1]
|
||||
[fld.m - j - 1],
|
||||
hblocks[k][fld.m - j - 1], tmp);
|
||||
hblocks[k][fld.m - j - 1] = tmp;
|
||||
}
|
||||
//I+I=0
|
||||
for (k = 0; k < block_count; ++k)
|
||||
hblocks[k][fld.m - j - 1].add
|
||||
(hblocks[k][fld.m - i - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
if (failed) continue;
|
||||
|
||||
pub.qd_sigs.resize (block_count - fld.m);
|
||||
for (uint i = 0; i < block_count - fld.m; ++i) {
|
||||
pub.qd_sigs[i].resize (block_size * fld.m);
|
||||
for (uint j = 0; j < fld.m; ++j)
|
||||
pub.qd_sigs[i].set_block
|
||||
(hblocks[i][j], block_size * j);
|
||||
}
|
||||
|
||||
//finish the pubkey
|
||||
pub.T = T;
|
||||
break;
|
||||
}
|
||||
|
||||
if (attempts == block_count) //generating G failed, retry all
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Redundancy-checking part of G is now (transposed) in ri.
|
||||
* Get QD signatures by getting every t'th row (transposed).
|
||||
*/
|
||||
|
||||
std::cout << "pubkey..." << std::endl;
|
||||
pub.T = T;
|
||||
pub.qd_sigs.resize (ri.width() / t);
|
||||
for (uint i = 0; i < ri.width(); i += t)
|
||||
pub.qd_sigs[i / t] = ri[i];
|
||||
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
@ -274,7 +382,7 @@ int privkey::prepare()
|
|||
return 0;
|
||||
}
|
||||
|
||||
int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
||||
int pubkey::encrypt (const bvector & in, bvector & out, prng & rng)
|
||||
{
|
||||
uint t = 1 << T;
|
||||
bvector p, g, r, cksum;
|
||||
|
@ -296,10 +404,6 @@ int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
|||
g.resize (t);
|
||||
r.resize (t);
|
||||
|
||||
for (i = 0; i < qd_sigs.size(); ++i) {
|
||||
std::cout << "Signature line " << i << ": " << qd_sigs[i];
|
||||
}
|
||||
|
||||
for (i = 0; i < qd_sigs.size(); ++i) {
|
||||
//plaintext block
|
||||
in.get_block (i * t, t, p);
|
||||
|
@ -330,13 +434,12 @@ int pubkey::encrypt (const bvector& in, bvector&out, prng&rng)
|
|||
//compute ciphertext
|
||||
out = in;
|
||||
out.insert (out.end(), cksum.begin(), cksum.end() );
|
||||
std::cout << "without errors: " << out;
|
||||
out.add (e);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int privkey::decrypt (const bvector&in, bvector&out)
|
||||
int privkey::decrypt (const bvector & in, bvector & out)
|
||||
{
|
||||
if (in.size() != cipher_size() ) return 2;
|
||||
|
||||
|
|
Loading…
Reference in a new issue