debugging stash 1
This commit is contained in:
parent
985c71e831
commit
1c2e807f69
|
@ -38,6 +38,7 @@ public:
|
||||||
bool operator* (const bvector&); //dot product
|
bool operator* (const bvector&); //dot product
|
||||||
bool zero() const;
|
bool zero() const;
|
||||||
void to_poly (polynomial&, gf2m&);
|
void to_poly (polynomial&, gf2m&);
|
||||||
|
void from_poly (const polynomial&, gf2m&);
|
||||||
};
|
};
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
|
|
@ -34,8 +34,16 @@ bool bvector::zero() const
|
||||||
void bvector::to_poly (polynomial&r, gf2m&fld)
|
void bvector::to_poly (polynomial&r, gf2m&fld)
|
||||||
{
|
{
|
||||||
r.clear();
|
r.clear();
|
||||||
if(size() % fld.m) return; //impossible
|
if (size() % fld.m) return; //impossible
|
||||||
r.resize (size() / fld.m, 0);
|
r.resize (size() / fld.m, 0);
|
||||||
for (uint i = 0; i < size(); ++i)
|
for (uint i = 0; i < size(); ++i)
|
||||||
if (item (i) ) r[i/fld.m] |= 1 << (i % fld.m);
|
if (item (i) ) r[i/fld.m] |= (1 << (i % fld.m) );
|
||||||
|
}
|
||||||
|
|
||||||
|
void bvector::from_poly (const polynomial&r, gf2m&fld)
|
||||||
|
{
|
||||||
|
clear();
|
||||||
|
resize (r.size() *fld.m, 0);
|
||||||
|
for (uint i = 0; i < size(); ++i)
|
||||||
|
item (i) = (r[i/fld.m] >> (i % fld.m) ) & 1;
|
||||||
}
|
}
|
||||||
|
|
|
@ -76,7 +76,7 @@ bool gf2m::create (uint M)
|
||||||
m = M;
|
m = M;
|
||||||
n = 1 << m;
|
n = 1 << m;
|
||||||
if (!n) return false; //too big.
|
if (!n) return false; //too big.
|
||||||
for (uint t = 1 + (1 << m), e = 1 << (1 + m); t < e; t += 2)
|
for (uint t = (1 << m)+1, e = 1 << (m+1); t < e; t += 2)
|
||||||
if (is_irreducible_gf2_poly (t) ) {
|
if (is_irreducible_gf2_poly (t) ) {
|
||||||
poly = t;
|
poly = t;
|
||||||
return true;
|
return true;
|
||||||
|
|
|
@ -67,15 +67,14 @@ void polynomial::mod (const polynomial&f, gf2m&fld)
|
||||||
void polynomial::mult (const polynomial&b, gf2m&fld)
|
void polynomial::mult (const polynomial&b, gf2m&fld)
|
||||||
{
|
{
|
||||||
polynomial a = *this;
|
polynomial a = *this;
|
||||||
clear();
|
|
||||||
uint i, j;
|
uint i, j;
|
||||||
int da, db;
|
int da, db;
|
||||||
da = a.degree();
|
da = a.degree();
|
||||||
db = b.degree();
|
db = b.degree();
|
||||||
if ( (da < 0) || (db < 0) ) { //multiply by zero
|
|
||||||
clear();
|
clear();
|
||||||
|
if ( (da < 0) || (db < 0) ) //multiply by zero
|
||||||
return;
|
return;
|
||||||
}
|
|
||||||
|
|
||||||
resize (da + db + 1, 0);
|
resize (da + db + 1, 0);
|
||||||
for (i = 0; i <= da; ++i)
|
for (i = 0; i <= da; ++i)
|
||||||
|
@ -113,7 +112,7 @@ bool polynomial::is_irreducible (gf2m&fld) const
|
||||||
xmodf.mod (*this, fld); //mod f
|
xmodf.mod (*this, fld); //mod f
|
||||||
|
|
||||||
uint d = degree();
|
uint d = degree();
|
||||||
for (uint i = 1; i <= d / 2; ++i) {
|
for (uint i = 1; i <= (d / 2); ++i) {
|
||||||
for (uint j = 0; j < fld.m; ++j) {
|
for (uint j = 0; j < fld.m; ++j) {
|
||||||
t = xi;
|
t = xi;
|
||||||
t.mult (xi, fld);
|
t.mult (xi, fld);
|
||||||
|
@ -124,7 +123,7 @@ bool polynomial::is_irreducible (gf2m&fld) const
|
||||||
t.add (xmodf, fld);
|
t.add (xmodf, fld);
|
||||||
|
|
||||||
t = t.gcd (*this, fld);
|
t = t.gcd (*this, fld);
|
||||||
if (t.degree() > 0) //gcd(f,x^2^i - x mod f) != const
|
if (!t.one() )
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
return true;
|
return true;
|
||||||
|
@ -228,7 +227,7 @@ void polynomial::compute_goppa_check_matrix (matrix&r, gf2m&fld)
|
||||||
{
|
{
|
||||||
if (degree() < 0) return; //wrongly initialized polynomial
|
if (degree() < 0) return; //wrongly initialized polynomial
|
||||||
uint t = degree();
|
uint t = degree();
|
||||||
vector<vector<uint> > vd, h;
|
vector<polynomial> vd, h; //matrix over fld
|
||||||
uint i, j, k;
|
uint i, j, k;
|
||||||
|
|
||||||
//construction from Barreto's slides with maximal support L=[0..fld.n)
|
//construction from Barreto's slides with maximal support L=[0..fld.n)
|
||||||
|
@ -246,20 +245,18 @@ void polynomial::compute_goppa_check_matrix (matrix&r, gf2m&fld)
|
||||||
for (i = 0; i < fld.n; ++i) {
|
for (i = 0; i < fld.n; ++i) {
|
||||||
h[i].resize (t);
|
h[i].resize (t);
|
||||||
for (j = 0; j < t; ++j) { //computing the element h[i][j]
|
for (j = 0; j < t; ++j) { //computing the element h[i][j]
|
||||||
h[i][j]=0;
|
h[i][j] = 0;
|
||||||
for (k = 0; k <= j; ++k) //k = column index of t
|
for (k = 0; k <= j; ++k) //k = column index of t
|
||||||
h[i][j] = fld.add (h[i][j],
|
h[i][j] = fld.add (h[i][j],
|
||||||
fld.mult (item (t - j + k),
|
fld.mult (item (t + k - j),
|
||||||
vd[i][k]) );
|
vd[i][k]) );
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//now convert to binary
|
//now convert to binary
|
||||||
r.resize (fld.n);
|
r.resize (fld.n);
|
||||||
for (i = 0; i < fld.n; ++i) {
|
for (i = 0; i < fld.n; ++i)
|
||||||
r[i].resize (fld.m * t);
|
r[i].from_poly (h[i], fld);
|
||||||
for (j = 0; j < fld.m * t; ++j)
|
|
||||||
r[i][j] = (h[i][j/fld.m] >> (j % fld.m) ) & 1;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void polynomial::make_monic (gf2m&fld)
|
void polynomial::make_monic (gf2m&fld)
|
||||||
|
@ -279,7 +276,7 @@ void polynomial::shift (uint n)
|
||||||
void polynomial::square (gf2m&fld)
|
void polynomial::square (gf2m&fld)
|
||||||
{
|
{
|
||||||
polynomial a = *this;
|
polynomial a = *this;
|
||||||
this->mult (a, fld);
|
mult (a, fld);
|
||||||
}
|
}
|
||||||
|
|
||||||
void polynomial::sqrt (vector<polynomial>& sqInv, gf2m&fld)
|
void polynomial::sqrt (vector<polynomial>& sqInv, gf2m&fld)
|
||||||
|
@ -329,10 +326,7 @@ void polynomial::div (polynomial&p, polynomial&m, gf2m&fld)
|
||||||
}
|
}
|
||||||
|
|
||||||
*this = s0;
|
*this = s0;
|
||||||
if (r0.degree() >= 0) {
|
make_monic(fld);
|
||||||
uint m = fld.inv (r0[r0.degree() ]);
|
|
||||||
for (uint i = 0; i < size(); ++i) item (i) = fld.mult (item (i), m);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void polynomial::divmod (polynomial&d, polynomial&res, polynomial&rem, gf2m&fld)
|
void polynomial::divmod (polynomial&d, polynomial&res, polynomial&rem, gf2m&fld)
|
||||||
|
@ -356,31 +350,35 @@ void polynomial::divmod (polynomial&d, polynomial&res, polynomial&rem, gf2m&fld)
|
||||||
void polynomial::inv (polynomial&m, gf2m&fld)
|
void polynomial::inv (polynomial&m, gf2m&fld)
|
||||||
{
|
{
|
||||||
polynomial a = *this;
|
polynomial a = *this;
|
||||||
this->resize (1);
|
resize (1);
|
||||||
item (0) = 1;
|
item (0) = 1;
|
||||||
div (a, m, fld);
|
div (a, m, fld);
|
||||||
}
|
}
|
||||||
|
|
||||||
void polynomial::mod_to_fracton (polynomial&a, polynomial&b, polynomial&m, gf2m&fld)
|
void polynomial::mod_to_fracton (polynomial&a, polynomial&b,
|
||||||
|
polynomial&m, gf2m&fld)
|
||||||
{
|
{
|
||||||
int deg = m.degree() / 2;
|
int deg = m.degree() / 2;
|
||||||
polynomial a0, a1, b0, b1, t1, t2;
|
polynomial a0, a1, b0, b1, q, r;
|
||||||
a0 = m;
|
a0 = m;
|
||||||
a1 = *this;
|
a1 = *this;
|
||||||
a1.mod (m, fld);
|
a1.mod (m, fld);
|
||||||
b0.resize (1, 0);
|
|
||||||
|
b0.clear();
|
||||||
|
b1.clear();
|
||||||
b1.resize (1, 1);
|
b1.resize (1, 1);
|
||||||
|
|
||||||
while (a1.degree() > deg) {
|
while (a1.degree() > deg) {
|
||||||
|
|
||||||
a0.divmod (a1, t1, t2, fld);
|
a0.divmod (a1, q, r, fld);
|
||||||
a0.swap (a1);
|
a0.swap (a1);
|
||||||
a1.swap (t2);
|
a1.swap (r);
|
||||||
|
|
||||||
t1.mult (b1, fld);
|
q.mult (b1, fld);
|
||||||
t1.mod (m, fld);
|
q.mod (m, fld);
|
||||||
t1.add (b0, fld);
|
q.add (b0, fld);
|
||||||
b0.swap (b1);
|
b0.swap (b1);
|
||||||
b1.swap (t1);
|
b1.swap (q);
|
||||||
}
|
}
|
||||||
a = a1;
|
a = a1;
|
||||||
b = b1;
|
b = b1;
|
||||||
|
|
Loading…
Reference in a new issue